SAMS el

ATARI
Trivia
Data Base

Date Base and Trivia Game

James F. Hunter
Troy Rondot

LIMITED SOFTWARE WARRANTY

This warranty applies only to the software portion of this product. If you purchased
this book by itself, without the companion diskette or cassette tape, then this section
does not apply to you. .

For a period of ninety (90) days from the date of original purchase at retail, the
warrantor, identified below, warrants this software toload and run as a basic program
for the indicated microcomputer model, to be free from defects in material and
workmanship and to be merchantable and suitable for its stated purpose for the
period of this warranty. This warranty may not be enlarged except in writing, signed
by warrantor. THE WARRANTOR EXPRESSLY DISCLAIMS ANY IMPLIED
WARRANTY INCLUDING THE WARRANTY OF MERCHANTABILITY AND
THE WARRANTY THAT THE SOFTWARE IS SUITABLE FOR ITS STATED
PURPOSE AS OF THE DATE NINETY (90) DAYS FROM THE ORIGINAL PUR-
CHASE OF THE SOFTWARE AT RETAIL.

In the event of defect, malfunction or failure of the software to conform with this
warranty, the warrantor will repair or replace the software at no cost to you. For
warranty service, you should return the software to the warrantor, Howard W. Sams
& Co., Inc., Attn: Sams Software, 4300 W. 62nd Street, Indianapolis, Indiana 46268.
Software received damaged as a result of shipping will require you to file a claim
with the carrier. This warranty gives you specific legal rights and you may also have
some other rights which vary from state to state.

THIS WARRANTY IS LIMITED SOLELY TO THE ABOVE AND THIS. WAR-
RANTY AND ANY WARRANTIES IMPLIED BY STATE LAW WILL APPLY ONLY
FOR THE PERIOD SET FORTH. (SOME STATES DO NOT ALLOW LIMITA-
TION ON HOW LONG AN IMPLIED WARRANTY LASTS, SO THE ABOVE
LIMITATIONS MAY NOT APPLY TO YOU.) THE WARRANTOR WILL NOT BE
LIABLE FOR ANY LOSS, DAMAGE, INCIDENTAL OR CONSEQUENTIAL
DAMAGES OF ANY KIND, WHETHER BASED UPON WARRANTY CON-
TRACT OR NEGLIGENCE, AND ARISING IN CONNECTION WITH THE SALE,
USE OR REPAIR OF THE SOFTWARE. (SOME STATES DO NOT ALLOW THE
EXCLUSION OR LIMITATION OF INCIDENTAL OR CONSEQUENTIAL
DAMAGES, SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY
TO YOU.) UNLESS OTHERWISE CONTRARY TO STATE LAW GOVERNING
THE PURCHASE, THE WARRANTOR’S LIABILITY SHALL NOT IN ANY CASE
EXCEED THE CONTRACT PRICE FOR THE SOFTWARE CLAIMED TO BE
DEFECTIVE OR UNSUITABLE.

WARNING: THE UNAUTHORIZED USE, REPRODUCTION OR DUPLICATION OF
THIS MATERIAL, OR ITS PUBLIC PERFORMANCE OR DISPLAY, BY ANY
MEANS IN ANY MEDIA FOR ANY PURPOSE, WHETHER IN WHOLE OR IN
PART, IS STRICTLY PROHIBITED. VIOLATORS WILL BE SUBJECT TO ALL CIVIL
AND CRIMINAL PENALTIES.

Atari® Trivia Data Base

James F. Hunter is currently Director of Publishing for Howard
W. Sams & Co., Inc. (ITT). A graduate of the University of Califor-
nia (Riverside), Jim is a veteran of seven years’ experience in the
personal computer field. In his spare time, he plays all board
games with an enthusiasm and facility that sometimes astonish
his opponents.

Troy Rondot, a 1983 graduate of Indiana University withaB.S. in
Quantitative Business Analysis, is a computer consultant. He
has worked with micros for the past six years. In addition to
being a computer “hacker,” Troy enjoys camping and hiking
with his wife and daughter.

Atari® Trivia
Data Base
by

James F. Hunter and Troy Rondot

Howard W. Sams & Co., Inc.
A Publishing Subsidiary of ITT
4300 West 62nd Street, Indianapolis, Indiana 46268 U.S.A.

©1984 by Howard W. Sams & Co., Inc.
A publishing subsidiary of ITT

FIRST EDITION
FIRST PRINTING—1984

All rights reserved. No part of this book shall be
reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical,
photocopying, recording, or otherwise, without
written permission from the publisher. No patent
liability is assumed with respect to the use of the
information contained herein. While every precaution
has been taken in the preparation of this book, the
publisher assumes no responsibility for errors or
omissions. Neither is any liability assumed for damages
resulting from the use of the information contained
herein.

International Standard Book Number: 0-672-22397-X
Library of Congress Catalog Card Number: 84-51541

Edited by Susan Pink Bussiere
llustrated by John E. Hopper

Printed in the United States of America.

Atari is a registered trademark of Atari, Inc.

Preface

All computers, including micros, are designed to emulate
processes of the human mind. It is, after all, we who have
defined the tasks assigned to computers, with the goal of free-
ing ourselves from tedious and repetitious tasks that can be
done more quickly and efficiently by an electronic device.

It is not unexpected that, after working with computers for a
while, we begin to regard them as intelligent living entities.
While not accurate technically, such an attitude can be of use in
discussing what the programs in this book are designed to do.

We need not be intimidated by the speed with which a com-
puter can do repetitious tasks and calculations. Remember that,
while doing those calculations, the computer need not be con-
cerned with satisfying superiors on the job, raising children,
paying bills, or trying to achieve goals set for itself, by itself. In
short, a computer is not distracted by the state of being human.

For its part, the computer does not enjoy some of the very
positive attributes of a human. It cannot think or feel or play. We
can. Playing a data retrieval game against a computer would be
no fun. The computer would always win. It is our own lack of
perfection at manipulating and retrieving data that has
accounted for the tremendous success of games like Trivial
Pursuit™. Aswe shalllearn, the process of information storage
and retrieval in a computer is exact and describable. Not so with
us humans.

How many times have you heard someone say, “That reminds
me of a story.” Why? What is the mechanism that links one
thought or event to another in the human mind? 1 don’t have the
answer, but | do believe that the lack of exact precision in
describing those links can be a source of entertainment for
people.

We are by nature curious. In the exercise of that curiosity we
amass tremendous quantities of information, some of which
might not be of immediate or even long-term use. In an effort to
justify the acquisition and retention of such bits of knowledge,
we name them trivia and proudly proclaim ourselves true foun-

Trivial Pursuit is a Horn Abbot game licensed by Horn Abbot Ltd. , owner of the
registered trademark Trivial Pursuit.

tains of useless information. In simpler terms, we try to express
our belief that knowing things for their own sake is rewarding
and fun. T ’

The purposes of this book, and the included programs, are
simple. The first purpose is to learn about the concept of a data
base program on a computer, how it is developed, and how it
works. The second and perhaps more important purpose is to
take advantage of the given data base by using it as a pool from
which to draw questions for the random inquiry trivia game
program. Its third purpose is for you just to have fun. It is our
hope that you will find both educational benefit and enjoyment
in this book.

James F. HUNTER

A note to the reader

The programs in this book were not written as applications
software but as educational examples of what your personal
computer can do. All of the programs have been tested and
work on the machine configuration for which they were
designed. The programs, or subroutines, are unprotected. This
means that you can modify them to better understand how they
work or to fit a different machine configuration.

What is a Combo Pack?

Atari Trivia Data Base is available in two formats—as abook and
as a book and disk combination, called a Combo Pack. ACombo
Pack is a step beyond your average technical book. While many
books give you programming examples through printed listings
(which we do here), Combo Packs also provide the listings
recorded on magnetic media, either disk, cassette tape, or both.
If you purchased the book only, you can type the programs
listed.

Every effort has been made to be clear, concise, and infor-
mative. If you experience any difficulty with the software opera-
tions, the solution can be found in the book or in your computer
manuals.

We are rather proud of the time and effort that went into
preparing the Combo Pack. If you have purchased the Combo
Pack and have enjoyed using it, let us know your thoughts. Your
comments will be valuable in preparing future Combo Packs.

Loading instructions

If you bought this book as part of a Combo Pack, a disk is
included. This disk contains the program listings printed in the
book and a file of sample trivia questions. You must first make a
working copy of the Combo Pack disk. To make a working copy,
do the following:

10.

11.

12.

To Make a Working Copy

. Turn off the power to the computer and all peripherals.

Turn on the disk drive.

. When the red light goes out, insert the Atari DOS 2.0S

disk into the drive and turn the door lever down.

. When the red light goes out, turn on the computer. Type

DOS and press <RETURNZ> to start the disk operating
system.

. Remaove the DOS disk and insert a blank disk into the disk

drive. (Label the blank disk “Working Copy” disk.) Close
the door lever.

. When the red light goes out, type I and press <RETURN>

to format the Working Copy disk.

The screen displays WHICH DRIVE TO FORMAT? Type 1
and press <RETURN>> for drive #1.

. The message TYPE Y TO FORMAT DISK 1 appears on

the screen. Type Y and press <RETURN>

. When the red light goes out, remove the Working Copy

disk and place the Combo Pack disk into the drive. Close
the door lever.

. When the red light goes out, type J and press <RETURN>

to duplicate the disk.

The computer displays DUP DISK-SOURCE,DEST
DRIVES? Type D1,D1 and press <RETURN>

The instruction INSERT SOURCE DISK, TYPE RETURN is
shown on the screen. Press <RETURN>

After afew moments, the message INSERT DESTINATION
DISK, TYPE RETURN is displayed. Remove the Comba

13.
14.

15.
16.

17.

18.

19.

20.

21.

22.

Pack disk and insert the Working Copy disk. Close the
door lever.

When the red light goes out, press <RETURN>

After a few moments, the instruction INSERT SOURCE
DISK, TYPE RETURN is shown. Remove the Working Copy
disk and insert the Combo Pack disk. Close the door
lever.

When the red light goes out, press <RETURN>

After a few moments, the screen displays INSERT DESTI-
NATION DISK, TYPE RETURN. Remove the Combo Pack
disk and insert the Working Copy disk. Close the door
lever.

When the red light goes out, press <RETURN>

This completes the copying of the files on the Combo
Pack disk to the Working Copy disk. Put the Combo Pack
disk in a safe place.

Type H and press <RETURN> to tranfer the DOS files to
your Working Copy disk.

The question DRIVE TO WRITE DOS FILES TO? appears on
the screen. Type 1 and press <RETURN>

The message TYPE Y TO WRITE DOS FILES TO DRIVE 1
is displayed. Type Y and press <RETURN>

When the computer is finished writing and the red light
goes out, remove the Working Copy disk. You can now
use the Working Copy disk to boot (start the program
without using the DOS master disk).

To load the programs from the Working Copy disk, perform
the following steps:

1.

2.

To Load the Programs

Insert the Working Copy disk into the drive and close the
door lever.

When the red light goes out, type B and press <RETURN>
to run Atari BASIC.

. Type RUN“D:DATABASE” (you must type the quotes) to
run the data base program.

OR

. Type RUN“D:GAME” (you must type the quotes) to play
the trivia game.

Contents

Chapter 1
INTRODUCTION t ittt et et eeeee e eene e aanns 15
Chapter 2
WHATISADATABASE? ... oo 19
Chapter 3
WHERE DOWEBEGIN? 23
Chapter 4
DESCRIPTION OF THE PROGRAMSottt 27
TriviaDataBase i 27
TriviaGame 29
Chapter 5
MAINMENU L. e 31
Initialization 31
Displayingthe MainMenu 33
Loadinganoldfile i, 34
Creatinganewfile i ... 35
Deletingafile i 37
Exiting theprogram oL 38
Chapter 6
EDITMENU L. 41
Displaying the EditMenul .. 41
EnteringData i 42
Entering first line of the question 43
Entering second line of the question 46
Enteringtheanswer L 47
EditingData 48
EditOptions ... 50

SUMMANY ..o e e 53

Chapter 7

DATA BASE SUBROUTINES ..ottt 55
Keyinputroutine i, 55
File countingroutine 56
Screen printingroutineo oL 56
Question numberroutine, 58
Blankingroutinel 58
Control keyroutine i, 58
Filenameroutineot 59
Question printroutine oo 59
Number length routine 60
Error trappingroutine 60
Chapter 8
GAME ANALYSIS ittt it i iitciii et enns 63
Initialization 63
Choosingafile ...l 64
Enteringnames i il 66
Playingthegame ool 67
Exitingthe programl 71
Chapter 9
GAME SUBROUTINES .+ it v et tiiiiineciiiiiia e eaaan 73
Keyinputroutine, 73
File counting routine L 73
Screen printingroutine o L 74
Score printing routine ool 75
Blanking routineol 76
Timerkeyroutine oL 76
File nameroutine i il 77
Question printroutineo 77
Error trapping routineo 77
Chapter 10
USINGTHEDATABASE . ..o oo 79
#1. LoadFile oo 80
#2. CreateNew File oo 80
#3. DeleteFile o i 80
#4. ExitProgram i 81

Enterand EditData ... 81
#1. Enter Data
#2, BditData . ..o e 83

#3. ReturntoMainMenu 84
Chapter 11
PLAYING THE GAME .t ittt e et e e e 85
OVeIVIBW L i e 85
Beginningthe Gameol 85
PlayingtheGame i i, 86
ExitingtheGame 87
Chapter 12
IN CONCLUSION &ttt ittt et it ettt et et e 89
Appendix A
VARIABLE DESCRIPTIONS .. oo it e e e e 91
DataBase 91
Stringvariables 91
Arrayvariables 91
Numbervariables i 9
GaAM ot e e 92
Stringvariables 92
Arrayvariables 92
Numbervariables 93
Appendix B
DATA BASE PROGRAM LISTING
(SEe FLOWCHARTS T-A THROUGH T1-1) oo oo 95
Appendix C
GAME PROGRAM LISTING
(st FLOWCHARTS 2-A THROUGH 2-E) 103

Chapter 1

Introduction

In the 1940’s, my father tuned pipe organs as a sideline, and he
later worked on the first electronic organs. In the process of
repairing and tuning organs, he kept coming across the fact that
the twelfth root of two is a very significant number in under-
standing the tempered musical scale. He needed to understand
that scale thoroughly to do a good job of tuning. Because he
worked principally as a motion picture projectionist at the time,
he had ample opportunity to set about calculating by hand the
twelfth root of two. At that time (and for some time prior) there
were logarithms that could provide the information to six deci-
mal places. However, intellectual curiosity and available time
combined to motivate him to calculate the root by mechanical
calculator and (after the calculator burned up) by hand.

The process was simple, if time consuming. He would pick a
number between one and two, multiply it by itself twelve times,
and see how close the result was to 2.00000. If the result of the
multiplications (all done by hand) was greater than 2.00000, he
reduced the trial number. If it was less than 2.00000, then he
increased the trial number.

Over a period of months (and great perseverance), he was
able to calculate the twelfth root of two to eight decimal places.
Ironically, a few months after completing this exercise, my
father discovered some log tables that rounded to ten decimal
places, and was naturally able to redo the process in a period of
minutes, as opposed to months.

In 1975, | purchased a Hewlett Packard calculator. With a few
keystrokes I found the log of two, divided it by twelve, and took
the antilog. In a matter of seconds, I'd obtained the same answer
that it had originally taken my father months to arrive at. That
speed in calculation is really what computers are all about. From
the earliest modern computer, which was used by the U. S.
Army to calculate mortar trajectories, to today’s mainframes,
minis, and microcomputers, the object has always been the
same—to relegate repetitious and time-consuming tasks to
electromechanical (and now silicon technology) devices.

15

16 Atari Trivia Data Base

A repeated calculation to obtain a mathematical answer is
popularly called number crunching. 1t was not long after the
advent of computers, however, when other kinds of activities,
which had previously been done by hand, were being done by
computer. One very obvious application is financial accounting,
with its ledgers, balance sheets, T accounts, and profit and loss
statements. One has but to remember the frustration of trying to
balance a checkbook to understand the relief felt by accoun-
tants with the introduction of computerized bookkeeping.

As computers have become smaller, more affordable, and
more powerful, other applications have been defined and
implemented. Specifically, the applications which are of interest
here are those currently being used on microcomputers, such as
the Atari 800 XL. It is helpful to understand general groupings of
those applications, so as to put the programs contained in this
book and the accompanying disk in perspective. There are five
main categories of microcomputer software, and each has sev-
eral sub-categories:

Accounting
General Ledger
Accounts Payable
Accounts Receivable
Inventory
Payroll

Productivity Tools
Word Processor
Spreadsheet
Data Base
Communications
Graphics

Education
Tutorial
Skill Remediation
Drill and Test
Programmed Instruction
Simulations

Entertainment
Shoot-em-ups
Strategy Games

Introduction 17

Fantasy Games
Simulations
Utilities
Programming Aids
Communications
Graphics

Looking quickly at the preceding list reveals that in this book
we are dealing with an area of productivity tools called data
bases. Before we begin construction of our data base, and
subsequently use it for an amusing trivia game, we must
describe and understand just what a data base is. And that’s what
is coming up in the next chapter.

Chapter 2
What is a Data Base?

The term data base in itself is quite descriptive. A collection of
information arranged in some non-random and accessible order
is a data base. Your telephone white pages are a data base. The
phone book gives multiple iterations of the same types of infor-
mation for many listees—last name, first name, address, and
telephone number. The Joy of Cooking cookbook is a collection
of recipes, each of which has ingredients and step-by-step direc-
tions for the preparation of particular dishes. It, too, is a data
base. Given just these two examples, think about what other
everyday sources of information could be regarded as data
bases.

To better understand what electronic (computerized) data
bases consist of and do, the following analogy to a commonly
used manual system of maintaining a data base may be helpful.
That system is the ever present 3 x 5 filing card system. Many
such index card systems are the result of our desire to collect.
Once our collection reaches a significant size, we need to have
control of its contents. This control can be used to trade, to sell,
to insure, to value, or for any number of other activities. For
whatever reason, we definitely need to control the collection’s
contents.

Let’s suppose that we collect cassette tapes of old-time radio
show broadcasts, and we want to be able to share them with
friends. Our collection has grown to over 600 shows, and mem-
ory alone will not suffice to summon up the exact details of each
show. Our friends ask if we have any Jack Benny shows. We
know there are two, but where? Time for an index file! Time,
indeed, for a data base!

19

20 Atari Trivia Data Base

Simply writing down the information about a show, in para-
graph form for instance, quickly proves of limited use. For
example:

The Jack Benny show broadcast June 4, 1938. Guest stars
include Edgar Bergen and Charlie McCarthy. The show
was sponsored by Lucky Strike, and is currently located
in my upper left-hand desk drawer, on the Sony tape
with the red and black label.

This card certainly has all the information we want, but after
we have finished ten cards or so, we begin to file them. How?
Alphabetically, of course. But alphabetically by what criteria? For
starters, let’s do it by the name of the show. What is the name of
the show: “T” for the, “)” for Jack, or “B” for Benny? We
obviously need some standard procedures. Also, when flipping
through the cards, we need to be able to find the information on
the show name quickly. Let’s put the show name on a separate
line at the top of the card.

The next thing we need to read on the card is the date of
broadcast. Let’s put it in the upper right-hand corner. And the
guests . . . second line, left-hand side. We are quickly design-
ing a format for the information. Ultimately, it could end up
looking like this:

Show title: Bdcst Date:
Guests: Sponsor:
Location: Running time:

Additional Comments:

At this point, let’s digress for just a moment to point out
another phenomenon resulting from the increasing use of
microcomputers. It has been dubbed computerphobia, and itis
often seen in the following form: the media has convinced us all
that we must be “computer literate” if we are to survive econom-
ically and socially in the next decade. We also are “required,” if
we would be thought “good parents,” to provide “computer

What is a Data Base? 21

literacy” for our children. Otherwise, perhaps we could be seen
as impeding their intellectual advancement and success poten-
tial as they grow up and enter a world controlled by computers.
However, we sometimes feel inadequate (if not plain stupid)
because we don’t understand microcomputers. If we admit it by
asking questions, people will then learn the worst—we really are
stupid.

Fortunately, this is not at all the case. Most often, it is not the
concept that we do not understand, it is the jargon used to
describe computers and their uses. An example may help to
shed light on this point: following are two versions of a para-
graph describing the use of our filing card system. The first uses
terms with which we are all familiar, thus the description and
concept are easily understood. The second, however, sub-
stitutes terms that would be used to describe the same data base
if it were in a computer environment. By comparing the two, you
see that (1) you can understand concepts of microcomputer
usage, and (2) you are definitely not stupid.

Ordinary version

Now that we have the information layout, we can begin
to fill out cards for each specific show. We can then file
them alphabetically by show title. After all of the cards have
been filled out, we can use the newly formed cardfile. If, as
time goes by, we change our collection, we can remove
cards, change cards, or insert cards to reflect those
changes. We can also decide to file them alphabetically by
another bit of information on each card, such as Guest
Stars, and re-sort them for location using that new cate-

gory.

Computerese version

Now that we have the format, we can begin to enter data
for each specific show. We can then sort the data records
by show title. After all of the records have been entered,
we can access the newly formed data base. If, as time goes
by, we change our collection, we can delete records, mod-
ify or edit records, or add records to reflect those changes.
We can also decide to sort them alphabetically by another
field, such as Guest Stars, and resave all records for access
using the new key field.

22 Atari Trivia Data Base

In general terms, then, a computerized data base does the
same things as a card system. So why bother with creating and
maintaining a data base? Because a computerized system can do
many other things that the card system can’t; it can also do them
far more quickly and easily. For example, let’s suppose we
wanted to find a show that was exactly 28 minutes long. Using
the filing card system, we would have to check each card by
hand or re-sort the cards by show length, from shortest to
longest or vice versa. On the computer, we ¢gn search on the
part of the card (field) that has the information until such a show
is found, and then read (access) that whole record. Such sorts
and searches, using a variety of keystrokes, are the backbone of
an electronic data base.

Next, let us suppose we also had established a dollar value for
each show, and entered that value in our format in its own
location (field). A sophisticated data base would also allow us to
add all of the values, thus giving us a total value for the collection
at any point in time.

Finally, we shall assume that our insurance company wants
limited information on each show in order to issue a policy on
the collection. Using the filing card system, we would have to
copy the cards. With an electronic data base, we could design a
new format for printing the data, in columns for example, and
summarize all of our shows on a few pages.

In summary, an electronic data base allows the creation of data
entry and output formats, and the actual entry, storing, retrieval,
editing, deletion, searching, and sorting of records.

In addition to these features, our trivia data base will be
complemented by a random inquiry program. Our data in the
trivia data base program will consist of questions and answers.
The second program (the trivia game) will randomly select ques-
tions from the data entered into the data base program itself,
compare our answers to the answers in the data base, and then
score us on the speed and accuracy of our replies.

Chapter 3
Where Do We Begin?

Now that we understand something of what a generalized
electronic data base is and what it does, we can begin to con-
struct our own specialized random inquiry version of a data
base. Beginning with Chapter 5, the method of this book is as
follows: first, define the aspect of our data base program to be
dealt with; and second, presentand explain the BASIC language
code that achieves the result. As a tool for following the logical
flow of both programs, we use standard flowcharting
techniques.

Such a process of program development is referred to as
modular programming. Each task has its own section of code;
and when we put them all together, we will have a program that
meets our original design specifications.

Before we begin, however, let’s review in more detail what we
want our program to do. First, we want to be able to enter trivia
data questions and answers (in pairs). Next, we want to be able
to edit (add and alter) those entries until we are satisfied with the
results. Finally, we want a second program that enables the
computer to ask us those questions randomly, and give us
individual and comparative scores for our efforts.

Perhaps a few comments on programming techniques and
style would be helpful at this time. With regard to structure, the
BASIC [anguage can be something of a trap for the unwary. If we
are not careful, the necessity to access subroutines in other
parts of our program could result in the creation of “spaghetti
code” (aterm meaning program code written in such a haphaz-
ard fashion that it “wanders” up and down, and decreases pro-
gram efficiency and legibility as it goes).

Top down, or structured, programming is much to be pre-
ferred. It means to start at the top (the beginning) of the program
and work out the details in a logical, sequential manner. This
requires that we have a very precise idea of how the logic of the
program will work before we write a single line of program code.

The assignment of variable names within the program is also
of great importance. You can prepare a logical scheme for these

23

24 Atari Trivia Data Base

variables by giving each variable a form that can be recalled
easily. In other words, make the variable names mnemonic. For
example, in the data base program the variable A$ stands for the
answer; QS for the question. Mnemonics are a great help as we
reuse variables throughout the program.

REMark statements within the program help remind us of the
function of modules. They also aid other programmers, who
might at some later date be working with the program, in under-
standing the logic we are using.

Finally, we cannot always assume that a user will follow our
directions. We must therefore allow for circumstances in which
the input of the user is entered at the wrong time oris entered in
an invalid form. The process of accounting for such events is
called “error trapping.” This process is nothing more nor less
than anticipating inappropriate actions by the program users,
and preventing those incorrect actions from causing the pro-
gram to fail, or “bomb” as we say in the trade.

We are now ready to build the skeleton of the program. Next
stop, the flowchart.

One popular misconception about computers (although you
don’t buy it for a minute!) is that they can think. Computers
cannot think. They can only be programmed to evaluate a spe-
cific situation according to exact guidelines, and then perform
certain calculations based on those guidelines. An example may
be of some help here.

Let’s suppose that we want to create a program that receives as
input from a user his sex, height, weight, and age. Then we want
to program the computer to return a message as to whether the
person who input the data is underweight, at a healthy weight
(for him or her), or overweight. Before we can begin writing
BASIC code, we must define the process by which the computer
can output the appropriate response.

For a first pass, let’s assume we have a chart of appropriate
weights for adults. We can program the computer to retain that
chart, and look up (based on the user input) an appropriate
weight based on sex, height, and age. For now, let’s just assume
that a program exists that will accomplish this task. We now
have, in the computer’s memory area, the target weight and the
actual weight of our suject. Now we come to the kind of logical
branching activities computers can be programmed for, and
which lead people to believe that computers can indeed think.

Where Do We Begin?

Actually, all that takes place are tests on the data, with selection

of the correct message based on the results of those tests.

‘ START ,

Is

response

valid
?

Y

Enter
height

Within

table

limits
?

Y

Within

table

limits
?

Look up true
weight from
tables based
on sex, height
and age

Is

weight

within

range of

true

height
?

Display
"Weight
OK!"”

25

Over-
weight
?

Display
“Underweight!”"

Display
"Overweight!”

RN

END

Fig. 3-1. Flowchart of the weight example program.

26 Atari Trivia Data Base

For the sake of this example, let us further assume that anyone
who is plus or minus 5% of his best weight is close enough, and
will receive a positive message. If his weight is less than 95% of
his target weight, he will get a “skinny” message, and if he is
over 105% of his best weight, he will read a “fat” message.

The preceding description of program flow is wordy, awk-
ward, and not easily understood at a glance. There must be a
better way, and there is. What we have here is a sequence of
tests, decisions, and actions that can be represented nicely by a
flowchart.

A flowchart is an outline of all the major steps necessary to
perform a given task. Referring to Fig. 3-1, it is now clear that we
receive input from a user, compare the actual and target
weights, and then choose one of three messages to display on
the screen. Even in this simple example, the value of the
flowcharting tool is evident. In more complex programs (such as
we are describing here), flowcharting is an invaluable aid to
understanding what is happening in the program. Using
Flowcharts 1-A through 1-1 and Flowcharts 2-A through 2-E
(which fold out of the back of this book), we will give an over-
view of the data base program and the trivia game program.

Chapter 4
Description of the Programs

Trivia Data Base

In the complete program listings (which appear in Appen-
dices B and C) and variable listings (which are in Appendix A),
you will note that this package actually consists of two different
programs: a data base management program for file (question
and answer) maintenance, and a game that utilizes those files.
On the disk (included in the Combo Pack version), the laborious
task of entering all of the code listed in the book has been
eliminated, and both programs appear in final useable form.

Let’s now look at the heart of our data base program (pull out
Flowchart 1-A for simuitaneous viewing). From the standpoint of
the user (that’s you), your first decision will be to load an existing
data file, create a new one, or delete afile. If you choose to load
an existing file or create a new one, you will be given three
additional choices (decisions, decisions!). These lists of choices
presented on the computer screen are called menus, and a
program that always has menu options available on the screen is
said to be menu driven (and sometimes even “user friendly”).

The first menu that appears is the Main Menu. See Flowchart
1-C. Based on which option is selected, there are three different
subprograms that are called into play. First, you can load an
existing file, in order to add to, edit, or delete from the file in
question. Next, you can create a new file, to handle questions
about a different category, or replace an old group of questions.
Finally, you can opt to delete a file, because after a while you will
learn all of the answers, and the game wouldn’t be fun anymore.
These options are illustrated on Flowcharts 1-D, 1-E, and 1-F,
respectively.

If you choose to delete a file, or load an existing file, the File
Choice Menu is displayed on the screen. This menu lists the
existing files from which you may choose. If you want to create a
new file, you are prompted to enter the file name.

After you have chosen an existing file or created a new one,
the Edit Menu is displayed. You again have three choices. On

Flowchart1-G, these options are to enter new data, edit old data,
27

28 Atari Trivia Data Base

Fig. 4-1. Mr. User Friendly.

or return to the Main Menu. For the program flow for the first
two options, see Flowcharts 1-H or 1-1, respectively.

If you choose option #1, enter data, the Question Entry
screen appears. You can enter new questions and answers,
which are simultaneously saved to disk, for use with the game
program.

If you choose option #2, edit data, the Question Edit screen is
displayed. You can choose the question and answer (the record)
to edit by having the program search forward or backward in the
file, or “jump” to a specified record number. After you have
edited the question and/or the answer, the changes can be
saved.

After all of this, you have a data base from which the game can
randomly call forth questions, and score you and your friends
(at least when the game starts, they’re your friends) on your
knowledge of the subject area.

Description of the Programs 29

Trivia Game

Aside from the instructional value of learning programming
concepts through the development of both programs, the trivia
data base and trivia game serve some other purposes.

First, everyone who has wanted to play catch with a football,
but couldn’t find a playing partner, will attest that such under-
takings aren’t much fun alone. With these programs, however, it
is possible to practice (cheat?) and improve one’s skills. Also, the
record and time keeping chores in such a fast-paced undertak-
ing as the trivia game is handled by the computer, leaving the
contestants free to deal with more trivial matters.

So, let’s look at how the game works. Please pull out Flowchart
2-A for simultaneous viewing. Pretty simple, isn’t it! Variable
initialization is done internally by the machine, then you choose
a data file (which was created with the data base program), enter
the number and names of players, and then you’re off to the
races.

In order to assure that none of the players (with a good
memory) has an advantage, the order of the questions is
scrambled. Fortunately, the corresponding answers are kept
with the questions. Then a player is put on notice that a question
is forthcoming. Ready! Set! Go! A timer starts, and the player
must enter the correct answer. If the answer is correct, points
will be awarded based on the elapsed time between question
and answer. Obviously, if the answer is incorrect, no points are
awarded. Each player will be asked five questions per game, and
the highest total score wins.

A file containing 100 sample questions is included if you
bought the Combo Pack. Not only has the recent interest in
trivia resulted in several board games, there is even a magazine
with oodles of new questions every month. Additional sources
for data base material can come from schools, club activities, or
any other aspect of life wherein rote learning is required.

That, then, is what this pair of programs is about. Chapters 5,
6, and 7 deal with an evaluation and discussion of the flowchart
for the trivia data base program, and the resultant BASIC code
that achieves that flow. Chapters 8 and 9 describe the code for
the trivia game.

We hope that you find the program logic and code generation
enlightening, and that you have as much fun using the program
as we had in testing it.

Chapter 5
Main Menu

Let’s now look at the data base program in detail. For descrip-
tions of the variables, refer to Appendix A. Flowchart 1-A is an
overview of the program. Chapter 7 explains all of the sub-
routines used in the data base program.

Initialization

The beginning of the program, the program initialization, sets
up the key conversion routine, and initializes the variables and
error trapping. See Flowchart 1-B. The key conversion routine is
made necessary by internal protocols of the Atari. The Atari also
requires that space be dimensioned (reserved) for all string
variables used in the program. Error trapping is required in
order to prevent unforseen errors, such as a “disk reading”
error.

100 DIM KEY1%(&64) ,KEY2%(&64)

110 KEY1$="LJ; K+%0 PU I-=V C BXZ4 36 521, .
N M/ R EY TWRY @7 3<:FHD GSA"

120 KEYZ2$="1J: K\“0 FU I_I1V C BXZ% #% % '[1
N M? R EY TWG()° @ FHD GSA"

130 KS=FEEK (141) *2S54+PEEK (14@)

140 FOKE KS+94,34

152 DIM DIRT(2@),0%(54),A%(25) ,BF(54) ,F¥(3),S5(
1208) ,E(100) ,N¥ {3)

160 FOR L=1 TO S4:Bs(L,L)=" ":NEXT L:0%=R$:A$=
E$(1,25)

179 GRAFPHICS @:TRAFP 7010

180 GOSUE &11@

198 FOEE 156,44:FOKE S3774,64

Line 100 reserves 128 spaces in memory by dimensioning two
strings (KEY1$ and KEY2$, which each contain 64 characters).
Lines 110 and 120 fill these spaces with characters in accordance
to the following rules:

* The position of all the characters is determined by their Atari
keyboard scan codes. Each character’s position represents
its keypress scan code plus one. The scan code for an

3

32 Atari Trivia Data Base

uppercase character is 64 plus the scan code for its lower-
case counterpart. (A cursory perusal of an ATASCII chart will
show why this is true.)

* All lowercase letters are converted to uppercase because
only uppercase letters are used while the program is run-
ning. This facilitates reading of the key scan codes.

* Spaces are used for special keys, such as <TAB>,
<CLEAR>, and <RETURN> because these keys cannot be
represented by a single character.

Perhaps some examples will make this more understandable.
The scan code for a lowercase letter “I” is 0, thus, an uppercase
letter “L” is placed in KEY1$ in position 1. (Position 11is the value
of its scan code plus 1.) The scan code for <RETURN> is 12, thus
a space is placed in position 13. And finally, the scan code for an
uppercase “T” is 109, thus an uppercase letter “T” is placed in
position 110 (in KEY2$).

Because KEY1$ and KEY2$ are string variables, when lines
110-120 are executed ATASCII characters are placed in memory
exactly as shown in KEY1$ and KEY2$. If you are typing the
listings into the computer, you must type KEY1$ and KEY2$
exactly as shown (including the spaces).

Line 130 loads the starting location of these dimensioned
characters into variable KS (the memory location where ATASCII
characters are stored). This is done because the memory loca-
tion of an ATASCII character can be derived by adding its scan
code (K) to KS and PEEKing into memory. This operation is
necessary because the scan codes do not follow in logical order.
If all of this sounds confusing, it's probably because it is. How-
ever, do not despair. This procedure is a peculiarity of the Atari,
and has little to do with the actual logic of the programs we're
discussing. If you choose not to master the process of key
conversion, just chalk it up to Magic, and let’'s move on.

Line 140 puts the ATASCII representation for a quote mark into
the reserved area. The quote mark is used as a beginning and
end delimiter (mark) for KEY1$ and KEY2$. If you placed a quote
in either of these strings in the same way that the characters are
placed in the strings, the quote would indicate to the program
that it had reached the end of the string. Therefore, the quote
must be placed into the reserved area using a POKE.

Lines 150 and 160 initialize the string and array variables that
are used by the program. The string variables must be initialized
to blanks because this is not an automatic feature of the Atari.

Main Menu 33

Line 170 sets the screen defaults to mode 0 and turns on the
error trapping routine at line 7010 (see Chapter 7). Line 180 calls
the file counting subroutine at line 6110, which counts the
number of data files on the disk. Finally, line 190 disables the
break key. This ensures that the program can’t be stopped
accidentally.

Displaying the Main Menu

When the program begins, the Main Menu is displayed (see
Fig. 5-1 and Flowchart 1-C).

T

TRIVIA DATA BASE
MAIN MENU

1. LOAD OLD FILE

2. CREATE NEW FILE

3. DELETE FILE

4. EXIT PROGRAM

PRESS (1-4)

~

Fig. 5-1. Main Menu.

The code for this section is:

728 REM #¥% MAIN MENU

1@ FOKE 7S2,1:FRINT 70

220 FOSITION 11,2:PRINT "TRIVIA DATA RBASE"
TE@ FOSITION 14,S5:FRINT "MAIN MENU"

24@ POSITIONM 11,8:FRINT "1. LOAD OLD FILE"
250 FOSITION 11,13:PRINT "2, CREATE NEW FILE"
268 FOSITICHN 11,12:FRINT “Z. DELETE FILE"®
27@ FOSITION 11,14:FRINT "4, EXIT FROGRAM"
ZEQ FOSITION 14,17:FPRINT "FRESS (1-4)°¢

27 [08UR s8138:IF KEC49 OR K2:52 THEN 27@
@ oM k2-48 5070 12192,20:0,5210,3@210

Line 210 turns off the cursor and clears the screen. Lines
220-280 print the menu on the screen.

34 Atari Trivia Data Base

Line 290 calls the key input routine at line 6010, and checks to
make sure the keypress (K2) is valid (i.e., less than 49 or greater
than 52, which is an ATASCII representation of a key input of 1
through 4). If the keypress isn’t valid, the program returns to the
key input routine to get another keypress.

If the user’s input is valid, line 300 directs the program flow to
the appropriate section. If option #1 (load an old data file) is
chosen the program continues at line 1010. If option #2 (create a
new data file) is chosen the program continues at line 2010. If
either option #3 (delete a file) or option #4 (exit the program) is
chosen, the program continues at lines 5010 or 8010.

Loading an old file

The code for choice #1, load an existing file, is as follows:

FEM =+%x CILE CHOICE MENU
FRINT """:FOSITION 12,3:FRINT "FILE CHOIC

w5
(]

IF F>9 THEN F=7%

IF F=0 THEN 110@

1279 OPEN #4,5,0,"D:#.TDE":FOR L=1 TO F:INFUT
44 DIR$:FOSITION 12,L+S:FRINT L:". “":;DIR$(I,10
Y :NEXT L:CLOSE #4

1935 FOSITION 12,F+7:PRINT "@. EXIT"

1949 FOSITION 12,F+9:FRINT “PRESS (@-";F;")"
1250 GOSUE £@1@:IF K248 OR KI:F+48 THEN 1050
1955 IF K2=48 THEN 210

124@ OFEN #5,46,@,"D:*.TDE"

1270 FOR L=1 TO K2-48: INPUT #5,DIR$:NEXT L_:CLQO
SE #S5:F$=DIR$(3,11)

193@ IF FH(LEN(F$) ,LEN(F$) =" * THEN F$=F$(1,L
EN(F$)-1):G0TO 108@

1298 GOSUE &£71@:0FPEN #5,4,8,DIR$: INFUT #5:N$:C
LOSE #5:N=VAL (N$) :GOTO 4010

110@ FOSITION 7,4:FRINT “NO OLD DATA FILES ON
DISK":FOSITION 12,8:FRINT "FRESS ANY EEY"

1110 GOSUE &6@1@:G0TO 21@

et et fT] Rt b
SRR S o]
B e :
[~

See Flowchart 1-D. Lines 1010-1040 dispiay the File Choice
Menu (see Fig. 5-2). First, line 1010 clears the screen and displays
“File Choices.” Then line 1015 sets the maximum number of files
to nine.

If there are no files on disk (F = 0), line 1020 transfers control
to lines 1100-1110. This section displays a “no files” message,

Main Menu 35

waits for a user prompt to continue, and returns the program to
the Main Menu.

If there are one or more files on disk, line 1030 opens the
directory for file names with the extension “TDB” and uses a
FOR...NEXT loop to display these file names. It then closes the
directory. Lines 1035-1040 print the exit option on the screen and
the message to press a key.

T

FILE CHOICES

1. filename
2. filename

0. EXIT
PRESS (0-n)

-~ -

Fig. 5-2. File Choice Menu.

Line 1050 calls the key input routine at line 6010 to get your
choice. It then checks the validity of the keypress. If your choice
is invalid (i.e., not one of the choices displayed) the key input
routine is again called. If you pressed 0, line 1055 returns the
program to the Main Menu.

If your choice is valid and your inputis not zero, the following
occurs. Line 1060 re-opens the directory. Line 1070 reads in the
file name you chose (F$), and line 1080 removes the blanks in the
file name. Line 1090 calls the file name routine at line 6710. When
the program returns from this routine, line 1090 inputs the
number of questions in the file and then transfers control to the
Edit Menu.

Creating a new file

The code for choice #2, create a new file, is:

2000 REM *** NEW FILE CHOICE
2018 FRINT "% "':POKE 752,0:F$=""

cont. on next page

36 Atari Trivia Data Base

2015 IF F»=9 THEN 209@

202@ FOSITION 7,S5:PRINT “NEW FILE NAME “;:INPU

T Fs

2823 IF F#="" THEN 2070

@25 FOR L=1 TO LEN(F#):IF ASC(F$(L,L)) <65 OR

ASC(F$(L,L)) >9@ THEN 2070

2@27 NEXT L

203@ FPOKE 752,1:TRAF 204@:0FEN #5,6,0,"D:%. %"
2@04@ INFUT #S,DIR$:IF DIR®(3,LEN(F#)+2)=F% THE

N CLOSE #5:G0TO 2070

205@ GOTO 2040

206@ CLOSE #5:TRAF 7010:G0OSUB 671@:0FEN #5,8,0
,DIR$:N=@:N$="@ ":FRINT #5;N$:CLOSE #S:F=F+1:

807D 4210

7@7@ FOKE 7S2,1:FOSITION 3,8:FRINT "ILLEGAL OR
DUFLICATE FILE MAME":FQOSITION 11,11:FRINT "FR

£35S ANY KEY"

2020 GOSUE 4@10:G0TO 210

2892 FOKE 752,1:FOSITION 8,8:FRINT “TOO MANY F
ILES ON DISK":FPOSITICN 12,11:FRINT "FRESS ANY

HEVY

2192 GOSUB 5210@:50TC 210

Refer to Flowchart 1-E. First, line 2010 clears the screen and
turns off the cursor. It then sets F$ (the file name) to null because
we are creating a new file name. If there are nine or more files on
disk (F>8), line 2015 transfers control to lines 2090-2100. This
section displays a “too many files” message, waits for you to
press a key to continue, and returns the program to the Main
Menu.

If there are less than nine files on the disk (F<9), line 2020
accepts the user input of the new file name (F$). Line 2023 checks
to see if F$ is blank. If so, control is transferred to lines
2070-2080, which print an “illegal or duplicate file name” mes-
sage and the prompt to press a key to continue. Control is then
returned to the Main Menu. Lines 2025-2027 check to see if the
file name is valid (i.e., the file name contains only letters). If the
file name is not valid, control is transferred to lines 2070-2080
(see above).

Line 2030 changes the location of where the program will
continue if an error occurs from its original location (at 7010) to
line 2060. (We will explain why in a moment.) It then opens the
directory so it can be read.

Lines 2040-2050 read and compare each file name to F$ to
search for duplicate file names. If there is a duplicate, control is

Main Menu 37

tranferred to 2070-2080 (see above). The program then goes back
to read the next file name. When the program reaches the end of
the last file, an error occurs. But because we have changed the
location of the error trapping routine, the error trap at line 2060
gets program control. We have changed the location of the error
trapping routine because we want the program to handle this
error differently than other errors. It must be noted, because we
have all been taught that “errors” are bad things, that in this
context an error can be used constructively to assist in the
direction of program control during execution. | had an Apple
customer who once was sure someone had broken his new
computer, because “Syntax Error” appeared on the screen.
Thank goodness you are much too sophisticated to have such a
negative reaction to our programming friend, the Error.

Line 2060 closes the directory. It then calls the file name
routine at 6710, which converts F$ to DIR$, and opens the data
file (DIR$). Upon return from the file name routine, line 2060 sets
N$ (the string representation of N) and N (number of questions)
to zero, and prints N$ as the first record of the file. It then closes
the file, adds one to the number of files (F), and transfers control
to the Edit Menu.

Deleting a file

Choice #3, delete a file, is accomplished with the following
code:

S0@@ REM *»% FILE DELETION

=@1@ FRINT "'":POSITION 12,3:PRINT "FILE DELET
ION"

S@T@ IF F=@ THEN S170@

S@I@ OFEN #4,6,0,"D:*.TDB":FOR L=1 TO F:INFUT

#4 ,DIR$:FOSITION 12,L+S:PRINT L;". ";DIR$(I,10
) :NEXT L:CLOSE #4

S@3S POSITION 12,F+7:FRINT "@. EXIT"

=@4@ POSITION 9,F+9:FRINT “DELETE WHICH FILE?"
:FOSITION 12,F+1@3:PRINT "PRESS (@-";F;")"

S@S@ GOSUE 4@10:1F K2:48 OR K2Z:F+48 THEN S050

S@SS IF K2=48 THEN 210

S@6@ OFEN #4,4,0,"D:*.TDB":FOR L=1 TO KZ-48:IN
PUT #4,DIR$:NEXT L:CLOSE #4:F$=DIR¥(3,11)

S@7@ IF FH(LEN(F$) ,LEN(F$))=" " THEN F$=F$(1,L
EN(F$)-1):G50TO S@78@

cont. on next page

38 Atari Trivia Data Base

S@8@ FRINT "7T*:POSITION 12,18:PRINT "DELETE "
FEy"?":POSITION 12,1Z2:FPRINT "PRESS Y OR N”
509@ G0OSUB 460@1@: IF K2=78 THEN 210

108 IF K2=8%9 THEN GOSUE &710@:XI10 35,#1,8,8,DI
R¥:F=F-1:60T0 210

5118 GOTO =270

512@ FOSITION 1@,4:FRINT "NO FILES TO DELETE":
FOSITION 12,8:PRINT "PRESS ANY KEY"

512@ GOSUB 401@:60T0 210

See Flowchart1-F. First, line 5010 clears the screen and displays
the message “file deletion.” If there are no files on disk (F = 0),
line 5020 transfers control to lines 5120-5130. This section dis-
plays a “no files” message, waits for you to press a key to
continue, and returns the program to the Main Menu. If there
are one or more files on disk, line 5030 opens the directory for
file names with the extension “TDB” and uses a FOR...NEXT
loop to display these file names. It then closes the directory.

Lines 5035-5040 print the exit option on the screen and the
prompt message to press a key.

Line 5050 calls the key input routine at line 6010 to get your
choice. Then it checks the validity of the keypress. If your choice
is not one of the options displayed, the key input routine is
called again. If you pressed 0, line 5055 returns the program to
the Main Menu.

If your choice is valid and your input is not zero, the following
lines are executed. Line 5060 re-opens the directory, inputs the
file name chosen (F$), and closes the file. Line 5070 removes the
blanks in the file name. Line 5080 clears the screen and prints a
confirmation message. Line 5090 calls the key input routine for a
keypress; if the keypress is “N,” control is transferred to the
Main Menu. If the keypress is “Y,” line 5100 deletes the file using
an XIO command, subtracts one from the number of files, and
transfers control to the Main Menu. If neither “Y” nor “N” was
pressed, line 5110 returns to the key input routine.

Exiting the program

Choice #4 exits the program. Program flow is directed to
statement 8010.

S@@@ REM *%x EXIT
9012 PRINT "4":FOKE 16,192:POKE S53774,247:F0OKE
752,0@: END

Main Menu 39

Line 8010 clears the screen and turns on the cursor. It also
enables the break key (which was disabled to prevent someone
from accidentally ending the program) and ends the program.

That’s it for the explanation of the program initialization and
Main Menu. By now you’re probably used to simultaneously
viewing the flowcharts and program notes. In the next chapter,
we describe the Edit Menu and how it works.

Chapter 6
Edit Menu

There are three choices in the Edit Menu. You can enter new
data or edit existing data in the data base, or return to the Main
Menu. The entry and edit modules are undoubtedly the most
complex in the data base program.

Displaying the Edit Menu

if you choose option #1 or #2 from the Main Menu (load an
old file or create a new one), the next menu you see is the Edit
Menu. See Fig. 6-1.

TRIVIA DATA BASE

CURRENT FILE — filename
OF QUESTIONS — n

EDIT MENU
1. ENTER DATA
2. EDIT DATA
3. RETURN 7O

MAIN MENU

PRESS (1-3)

~

Fig. 6-1. Edit Menu.

The following code displays the Edit Menu:

42008 REM »%% EDIT MENU

121@ FOKE 752, 1:FRINT Y

4020 FOSITION 11,2:FRINT "TRIVIA DATA BASE"
48Z@2 POSITION 9,4:PRINT “CURRENT FILE - "“;F%:F
OSITION 2,Z:PRINT "# OF QUESTIONS - ":N

4240 FOSITIONM 14,8:FRINT "EDIT MENU"

400 POSITICN 11,11:PRINT "1. ENTER DATA"

4@&6@ FOSITION 11,1Z:PRINT "2. EDIT CATA"

cont. on next page
41

42 Atari Trivia Data Base

437@ FPOSITION 11,1S5:PRINT "3Z. RETURN TO":POSIT
ION 14,16:PRINT "MAIN MENU"

4080 FPOSITION 13,19:PRINT "PRESS (1-2)"

4108 GOSUB &£010@: IF K249 OR K2>51 THEN 4180
4112 ON KZ-48 GOTO 7210,4128,210

Refer to Flowchart 1-G. Line 4010 turns off the cursor and
clears the screen. Lines 4020-4080 display the current file name
(F$), the number of questions in that file (N), and the Edit Menu
options.

Line 4100 calls the key input routine at line 6010 (see Chapter 7)
and checks to make sure that the keypress was a1, 2, or 3. You
have three choices. You can enter new data (#1), edit old data
(#2), or return to the Main Menu (#3). Line 410 directs the
program flow to choices 1, 2, or 3, lines 3010, 4120, or 210,
respectively.

Now let’s look at the three choices on the Edit Menu in detail.

Entering data

If you choose option #1 from the Edit Menu, the following
code is executed. Pull out Flowchart 1-H for simultaneous refer-
ence, refer to Appendix A for variable descriptions, and let’s
look at the logic for entering data. Remember, subroutines for
this program are in Chapter 7.

@@ REM w#*# QUESTION ENTRY

TH1@ IF NX=102 THEN 2600

TP2@ GOSUR &21B:FPOSITION 13,7:FPRINT "QUESTION
ENTRY " :N=MN+1:50SUE 6410

I@IQ@ FOSITION 2,21:FRINT "“R:RESTART “ETEXIT

T18@ COPEN #5,9,0,DIRf:Qf=Ef:Af=0F (1,05

Line 3010 checks to see if the number of questions is greater

than or equal to 100. If so, the program transfers to lines
3600-3610.

I5@@ PRINT *71":FOKE 752,1:FOSITION 14,8:FRINT
YFILE FULL":POSITION 12,11:PRINT "FRESS ANY EE
‘{ll

4512 S0SUR 60190:CLOSE #Z:0FEMN #5,12,0,DIR#:60S
UE &621@:FRINT #S;N¥:CLOSE #5:G50T0 4010

Edit Menu 43

Line 3600 prints a “file full” message and prompts the
user to continue. Line 3610 closes the data file and opens it
at the beginning of the file. It then calls the number length
routine at line 6910. Upon returning from this routine, line
3610 prints the number of questions in the file, closes the
file, and transfers control to line 3010 for a different edit
option.

Line 3020 calls the screen printing routine at 6210, which prints
the question entry screen (see Fig. 6-2). Line 3020 then incre-
ments N (the number of questions) by one and transfers to the
question number routine at line 6410, which prints the number
of questions.

Line 3030 prints the entry control options ("R: Restartand "E:
Exit). Line 3180 opens the data file for input and output, and
blanks the current question and answer.

T

TRIVIA DATA BASE
QUESTION ENTRY
QUESTION #n FILE NAME filename
QUESTION?
ANSWER?
AR: RESTART AE EXIT

Fig. 6-2. Question Entry screen.

Entering first line of the question

As Fig. 6-2 illustrates, there are two lines on which to enter the
question. Entering characters on the first line is handled some-
what differently than entering characters on the second line.
The next section of code and program description deals with
entering characters on the first line of the question. We will
describe the code for entering characters on the second line
afterwards.

44 Atari Trivia Data Base

190 POFE 722,8:FOSITION 13,2:PRINT " ;
I139% IF MNX10@ THENM N=180:G0T7T0 =400

298 T=0:5=0

21 R=IZ220:50T0 =720

IF =12 AND FL=1 THEN 4610

IF K=12 THEN 1450

IF K=52 AND T>® THEN FPOSITION T+1Z,92:FPRIN
T " M3 QE(T,T)=" ":T=T-1:607T0 =210

IT27@ IF KEZ=T2 AND k<33 THEN 210

ITEB@ T=T+1:0%(T,T)=CHRF(K2):FOSITION T+13,9:PR

THEN 3710
® THEN FOSITION 4,11:PRINT " €"3::G

TO 1 STERP —-1:IF Q#F(S,5)=" " THEN

=22-8: T=22+S:POKE 7352,1

3740 FOR L=1 TO S:0QF(22+L ,22+L) =08 (22-5+L ,22-8
+L) :POSITION L+3,11:PRINT QF {22+ ,224L);

II5e Q$(22—S+',:2~Q+L/—" ":POSITION 3I5-S+L,9:F
RINT " "3;:NEXT L

Line 3190 turns on the cursor and places it at the first location
on the question line. Line 3195 checks to see if the new number
of questions (N) is greater than or equal to100. If so, the program
transfers to lines 3600-3610 (as above). If N is less than 100, line
3200 resets the number of characters in the question (T) and the
number of spaces at the end of the first line of the question (S) to
zero.

Line 3210 sets R (the line number to which the program will
return) to 3220. (This means that when a GOTO R is reached, the
program will return to line 3220.) Then, line 3210 transfers con-
trol to a routine at lines 3700-3730. This routine first calls the
control key routine at line 6610. After the control key routine is
executed, control is transferred back to the calling routine at
line 3700, which is a control key handling routine for question
and answer entry.

TT7O@ GOSUR &£4518:IF FL
S71@ IF #=1£8 THEN QF
@:6070 T192

I72d IF K=17@ THEN CLOSE #5:0FEN #5,12,@0,DIR%:

1 THEN Z7ZI0
B¥: A¥=F% (1,235} :GOSUER &51

Edit Menu 45

M=N—1:G0SUR 6910:FRINT #5;N#:CLOSE #5:50T7T0 401
16
I7I@ GOTO R

The code for entering data is also used by the edit
section of the program. Therefore, FL is a flag that indicates
if the entry routine is currently being used by the edit
routine. A flag is simply a two-position switch, which can
help us keep track of the status of program execution.

If FL (flag) = 1 (indicating the entry routine has been
called by the editing routine), then the next two program
lines (lines 3710 and 3720) are skipped because control keys
are not allowed when we are editing a question.

If K = 168 (which indicates that "R, restart, was pressed),
line 3710 blanks the question and answer and clears a
portion of the screen using the blanking routine at line
6510. Line 3710 then transfers control back to line 3190 to
start entering the question again (restart).

If K = 170 (which indicates that "E, exit, was pressed) line
3720 is executed. It closes the file and opens it again at the
beginning of the file. Line 3720 then calls the number
length routine at 6910. Upon return from this routine, line
3720 prints the number of questions to the file, closes the
file, and returns control to the Edit Menu.

Line 3730 returns to location R (line number R as spec-
ified earlier, line 3220).

If <RETURN> is pressed and FL = 1 (indicating this is a
question edit), line 3220 transfers control back to the edit
options at line 4610. If <RETURN> is pressed (FL <> 1, which
indicates that this is a new entry), line 3230 transfers control to
line 3450 to enter the answer.

If <BACKSPACE> is pressed and T (number of characters) >0,
line 3240 prints a backspace. Then the character that was back-
spaced over is blanked from the question, T is decremented
(one is subtracted from T), and control is transferred to line 3210
to get a new keypress.

Line 3270 checks to make sure that when K2 (the ATASCII
keypress) equals 32 (a space), K (the key’s scan code) equals 33
(scan code for a space). This is done to ensure that if the
returned ATASCII keypress is 32, the space bar was pressed and
not a special key, such as <TAB> or <CLEAR>. (See the Ini-
tialization section in Chapter 5.) If K2 doesn’t equal 32 and K

46 Atari Trivia Data Base

doesn’t equal 33, control is transferred to line 3210 to get
another keypress.

Line 3280 increments the number of characters (T), adds the
keypress (CHR$(K2)) to the question string (Q$), and prints the
character to the screen.

Line 3300 checks to see if you are at the last character on the
first line of the question (T = 22). If not, control transfers to 3210
for another keypress.

If you are at the end of the first question line, lines 3310-3350
are executed. Line 3310 checks to see if the last character typed
was a space. If it was a space, the cursor is moved to the second
line of the question and control is transferred to 3360 for input of
the second line of the question.

If the last character typed wasn’t a space, the word you are
typing won'’t fit on the first line, and must be moved to the
second line. The following occurs. Lines 3320-3330 count back
through the number of characters until a space is reached. Line
3335 adjusts S (number of spaces at the end of the firstline) and T
(number of characters in the question) to reflect the number of
actual spaces that must be added to the end of the first line to
force the partial word to the second line. It then turns off the
cursor. Lines 3340-3350 contain a FOR...NEXT loop, which moves
the partial word to the second line, inserts spaces into Q$ (the
question), and displays the moved word on the second line.

To be sure, such attention to aesthetics is not mandatory, but |
don’t like wrapped-around words, and I'll bet you don’t either!

Entering second line of the question

This section is almost identical to the code for entering char-
acters on the first line of the question. The only differences are
in how the program handles a <BACKSPACE> keypress and the
last character on the line. Therefore, we will only describe the
sections of code that perform these functions.

IZT6@ FPOKE 752,0:FOSITION T-18,11:FRINT " «";
IT7@ R=II7Z2:6G0T0O I7ee

72 IF KE=12 aND FlL=1 THEN 4410

S IF K=12 THEN 2452

3IB@ IF K52 THEN 3397

3385 IF Tx5+22 THEN POSITION T-192,11:FRINT "
"1:OF(T,T)=" ":T=T-1:60T0 2378

-

Edit Menu 47

339@ FOKE 752,1:FOR L=1 TO S:Q$(22-5+L,22-5+L)

=QF(IT+L,22+L) :FOSITION I5-S+L,9:PRINT @%(22-S

+L,22-S+L) ;

II95 QF(22+L,22+4L)=" ":POSITION L+3,11:PRINT "
"y iNEXT L:@$(22,22)=" ":FPOKE 752,0:FOSITION 3

5,7:PRINT " &3

II96 S=@:T=21:G0T0 210

3297 IF T=54 THEN 3370

I40@ IF K2=3I2 AND K< >3 THEN 337@

3410 T=T+1:0#(T,T)=CHR$ (K2) :FOSITION T-19,11:P

RINT CHR#(£2);:G0TO I370

Line 3360 turns on the cursor and positions it on the second
line.

If <BACKSPACE> is pressed, the following occurs. If you were
typing a word on the second line and pressed <BACKSPACE>,
line 3385 checks to see if the word (or partial word) will now fit
on the end of the first line. If the number of characters on the
second line (T - 22) is greater than the number of spaces available
on the end of the first line (S), line 3385 performs a “normal”
backspace and control is transferred to 3370 to get the next
keypress. If the number of characters on the second line is less
than or equal to the number of spaces available on the end of the
first line, the FOR...NEXT loop at lines 3390-3396 is executed.
This loop moves the characters from the second line into the
spaces at the end of the first line, updates Q$, and positions the
cursor at the end of the first line. Line 3396 sets S (the number of
spaces) = 0, sets T (the number of characters) = 21, and trans-
fers control to line 3210 for first line input.

The second difference between firstand second line question
entry is that when you reach the end of the second line (T = 54),
the only characters accepted are <RETURN> and
<BACKSPACE>.

The preceding sections on wraparound control can have
future applications in programs you might write. You may want
to mark them for future detailed review.

Entering the answer

Coming up next is a description of the code for entering the
answer into the data base. This section is similar to the section
for entering the question, except the answer is entered on only
one line (and not two). Again, only the differences are
described.

48 Atari Trivia Data Base

When entering answers, <BACKSPACE> is always a “normal”
backspace (and not handled as it is on the second line of ques-
tion entry). Also, only 25 characters (and not 54 characters) can
be entered.

450 T=@:FOSITION 1@,17:FRINT " ";

T460 R=34709:60T0 Z70@

T47@ IF =12 AND FL=1 THEN 44720

I48@ IF k=12 THEN I540

I47@ IF K=52 AND T:@ THEN FOSITION T+1@,17:FRI
NT " "3 AR(T,T)Y=" ":T=T-1:60T0 =440

IZT2@ IF T=25 THEN 3440

I51@ IF E2=3Z2 AND EZIZT THEN T460

ISR2@ T=T+1:AF(T,T)=CHR$E (K2 :FOSITION T+10@,17:F
RINT CHR$(+2):;:6G0TO T44602

ZT6@ FRINT #S;0F:PRINT #35:AF:N=N+1:605UE &£418:
QF=pRF: Q¥=PF (1,25 : 605U 6310:607T0 =192

One of the neat (or frustrating, depending on your point of
view) things about computer programs is that they are never
done. You can always think of more features to add. If you are so
inclined after a first runthrough of this book, here are a couple
of suggestions forimproving the answer input routine. First, you
could make sure that the answer is no more than two words
long. Second, you could eliminate any occurences of articles
suchas “a,” “an,” or “the.” In this way, the player would not have
to type the article to get a correct answer. For example, suppose
you enter “the Constitution” as the answer to a question in the
data base program, and the program doesn’t eliminate “the.” A
trivia game player would have to answer the question as “the
Constitution,” even though “Constitution” is also correct.
Finally, you could add a section of code that would make sure
that some answer (at least one character) is entered before
saving the question and answer to disk.

That, then, comprises the code for the entering data section
of the program. But, as noted earlier, nobody is perfect, and
even after we have entered what we think is correctinformation,
we sometimes will have to change it. Time to look at the editing
process, and that is next.

Editing data

Pull out Flowchart 1-I for simultaneous reference, refer to
Appendix A, and let’s look at the logic for option #2 from the

Edit Menu 49

Edit Menu, edit data. Subroutines are in Chapter 7. This option
allows you to edit data that is already entered into the data base.
You can edit the question and/or the answer.

The next section of code indexes the records, and prints the
Question Entry screen and edit options. It then sets up the
program to allow the use of the edit options. The code is:

4172@ PRINT “%":IF N=@ THEN FOSITION 11,9:PRINT
"NO DATA IN FILE":POSITION 12,11:FRINT "FRESS
ANY KEEY"

417@ IF N=@ THEN GOSUB 4@1@:50T0 4210

414@ POSITION 11,11:FRINT ".... FLEASE WAIT"

415@ OFEN #4,17,0,DIR$: INPUT #4 ,Nf:N=VAL (N$):F

OR L=1 TO N:NOTE #4,X,Y:S(L)=X:B(L)=Y: INFUT #4
,O%, AF:NEXT L

417@ M=1:FOKE 7S2,1:FRINT """:G50SUR 621@:F0OSIT
ION 13,Z:PRINT "GUESTION EDIT"
41808 FOSITION 2,21:PRINT ' “F:FWD "R:REV ~J:JM

P “C:CHG "E:EXT *

420@ POINT #4,S(M),B (M) : INFUT #4,0%,9%:N$=STR$
(M) :IF M<{1@@ THEN N (Z,Z)=" ":1IF MJI1@ THEN N#(
r:\ l:\)=ll ”

2,2

4218 POSITION 13,5:FRINT N¥; :60S5UB &818:G05UEB
6820

Line 4120 clears the screen and checks to see if there are no
questions in the file (N = 0). If N = 0, the rest of line 4120 and
line 4130 print a “no data in file” message, prompt to continue,
and return control to the Edit Menu section of the program.

If N > 0 (there are questions in the file), the following lines are
executed. Line 4140 prints a “please wait” message because
indexing the records can take up to 22 seconds. A quick and easy
method of customizing the program is to alter the “pacifier”
message in line 4140. Line 4150 opens the file and uses a
FOR...NEXT loop to record the sector and byte location of each
question in variables 5(100) and B(100). These are linear array
variables, and can be thought of as a single column look-up
table. Line 4170 sets M (the current question number) = 1and
calls the screen printing routine at 6210, which prints the Ques-
tion Edit screen (see Fig. 6-3). Line 4180 prints the edit options.

Line 4200 points to the location on the disk of the current
record; it then inputs that record into Q$ (question) and A$
(answer), and converts the current question number (M) into a
string of length 3 (N$). Line 4210 prints the record number, the
question, and the answer to the screen.

50 Atari Trivia Data Base

TRIVIA DATA BASE
QUESTION £DIT

QUESTION #r FILE NAME filename

QUESTION?

ANSWER?

AF:FWD ARREV AJIMP ACCHG AEEXT

-~

Fig 6-3. Question Edit screen.

Edit options

We now have several options: we can choose to search the file
forward one record at at time, backwards one record at a time,
jump to a record, change a record, or exit. See Fig. 6-3. But first
we have to get your choice.

4220 GOSUER 661@:IF K=168 AND M>1 THEN M=M-1:G0
SUR 43513:G507T0 4200

4270 IF W=184 4ND MM THEN M=M+1:G0OSUB &£510:G0
TO 42@0

424@ IF K=129 THEN 4408

4250 IF k=146 THEN 4520

426@ IF K=170 THEN CLOSE #4:G0T0 4010@

427@ GOTO 4220

Line 4220 calls the control key routine at line 6610, which gets
your input.

The first option the program checks for is "R:REV (reverse),
which is the command to look at the previous record. After
control is returned from the control key routine, line 4220
checks to see if K = 168 ("R) and if M (current record) > 1. If so,
M is decremented by one, the screen is blanked by the blanking
routine at 6510, and control is transferred to line 4200 to print the
current information (question, answer, and question number)
to the screen.

Edit Menu 51

Likewise, we can look at the next record. This option is
the "F:FWD (forward) command. If K = 184 ("F)and M <N, line
4230 increments M by one, blanks the screen, and control is
transferred to line 4200, which prints the new (current) informa-
tion to the screen.

Another option is to “jump” to a specified record. This is the
"J:JMP command. With up to 100 records in a file, it would take
forever to step through from the beginning to the end (i.e., if
you were at record 2, and wanted to go to record 88); thus, the
jump option. If K = 129 (")), line 4240 transfers control to line
4400, which is a jump routine. The jump routine is described
near the end of this chapter.

We can also change a record. The command for this is
"C:CHG. We can then redo the question {"Q:QUESTION) or
the answer ("A:ANSWER). If K = 146 ("C), line 4250 transfers
control to line 4500. This section of code will also be described
shortly.

Finally, we can choose to exit this module and return to the
Main Menu. The command for this function is "E:EXT. If K = 170
{"E), line 4260 closes the file and transfers control back to the Edit
Menu (line 4010).

If K was not equal to a valid edit option, then line 4270 trans-
fers control back to line 4220 to get another keypress.

Now on to the two portions of code that are executed from the
edit options section. They are the jump routine and the change
option.

As described earlier, if you choose the "] (jump) option, then
K = 129. Line 4240 transfers control to the jump routine at line
4400.

1408 TRAF 44928:F0OSITIOM Z,21:PRINT Bf(1,36);:F
CSITION 2,21:FRINT " JUMP 70 WHICH RECORD "3:1I
NFUT ™M

441@ IF M<1 OR M:>N THEN 4400

4420 FOSITION 28,21:FPRINT CHR¥(124);: TRAF 7210
:50T0 412390

Line 4400 first sets the error trap to line 4400 in case there is an
entry error. It blanks the bottom line on the screen and prompts
the user to input the number of the record to jump to (M). Line
4410 makes sure that M is not less than 1 or greater than N. If M <
Tor M > N, control is transferred to 4400 to get another record
number to jump to. Otherwise M is valid; line 4420 resets the

52 Atari Trivia Data Base

error trap to line 7010 and transfers control to 4180 to update the
screen.

If you choose the "C (change) option, then K = 146. Line 4250
transfers control to line 4500.

4@ FOWE 7T52,1:FPOSITION 2,21:FRINT " ~Q:QUES
TION TA:ANSWER “E:EXIT

4510 GNSUR &618:IF K=175 THEN 4400

452@ IF K=1%1 THEN 4620

4570 IF K<x17@ THENM 4510

4548 GOTO 4190

4£2@ FOSITION 2,21:PRINT B#(1,35) : @%=B%: 505UB
4£810@:FL=1:60T0 2190

4410 FL=@:FOINT #4,5S(M),B(M):FRINT #4;Q%:FRINT
#4; A%: GOTO 4520

4462@ FOSITION 2,21:FPRINT B#(1,35):Q%=BF(1,25):
GOSUR &68Z@:FL=1:FOKE 752,0:G07T0 =450

45708 FL=0:FOINT #4,5(M),B(M):FRINT #4;0%:FRINT
#4,A4%:60T0 4Z20

Line 4500 turns off the cursor and prints the change options
on the screen. See Fig. 6-4. Line 4510 calls the control key routine
at line 6610.

A Q: QUESTION A AL ANSWER AE EXIT

Fig. 6-4. Change options.

If K =175 (" Q, question edit) upon returning from the control
key routine, line 4510 transfers control to line 4600. Line 4600
blanks the question, sets FL = 1(to signify an edit), and transfers
control to line 3190 for question entry. Upon return from the
question entry section, line 4610 updates the file with the new
question and transfers control back to the change options (line
4500).

However, if K = 191 ("A, answer edit) upon returning from the
control key routine, line 4520 transfers control to line 4620. Line
4620 blanks the answer, sets FL = 1 (to signify an edit), and

Edit Menu 53

transfers control to line 3450 for answer entry. Upon return from
the answer entry section, line 4630 updates the file with the new
answer and transfers control back to the change options (line
4500).

If K <> 170 (not “E, exit) upon returning from the control key
routine, line 4530 transfers control back to line 4510 to get a
different key because the keypress was not a valid choice.

Otherwise, K = 170 ("E, exit), and line 4540 transfers control
back to the edit options (line 4180).

Summary

In Chapter 5 we learned about the Main Menu. We described
that menu, and the initial program flow for options #1 (load a
file) and #2 (create a new file). In addition, options #3 (delete a
file) and #4 (exit the program) were described.

This chapter outlined the program flow if you choose option
#1 or #2 from the Main Menu. If either of these options is
chosen, the program proceeds to the Edit Menu. We then
described, in detail, the three options in the Edit Menu. They are
options #1 (enter data), #2 (edit data), and #3 (return to the
Main Menu).

In the next chapter (Chapter 7) we’ll learn about the sub-
routines in the data base program.

Chapter 7
Data Base Subroutines

Subroutines are of great value to the programmer because
quite often a particular action is repeated throughout a pro-
gram. Rather than copy the same code over and over, that action
is identified as a subroutine. Then when the action is required,
the subroutine is invoked, or called, eliminating many lines of
code. The key input routine, used extensively up to this point, is
a prime example.

Key input routine

The key input routine gets an input from the keyboard and
converts it to an ATASCII character, which can be used by the
data base program. The code that accomplishes this is:

&00@ REM »%x KEY INFUT ROUTINE
&@010@ K=PEEK (764):1IF kK:>127 THEN £010
6020 FOKE 764,285: K2=FPEEK (K+k5) : RETURN

Line 6010 PEEKs to memory location 764 and sets K (the vari-
able for the keypress scan code) equal to the scan code of the
last key pressed. If no key was pressed, K = 255. If K > 127, a
control key or no key (which are not valid keypresses in this
instance) was pressed and the routine calls itself (is repeated).

After a valid key is pressed (thus, K has a value less than or
equal to 127), line 6020 places a value of 255 into location 764,
which signifies that we have already read the keypress. It then
adds K to our KS (keystart) and we PEEK to find the ATASCII code
(K2) corresponding to the keystroke. Finally, line 6020 transfers
control to the line which called the key input routine.

The commands PEEK and POKE are not mysterious actions
with cute names. If you visualize the memory of your Atari as
little compartments in a desk, PEEKing allows you to look at the
current contents, and POKEing allows you to put somethinginto
the compartment. Now you can amaze your friends by talking
computerese when you work the terms PEEK and POKE into your
cocktail party conversation!

55

56 Atari Trivia Data Base

File counting routine

The file counting routine counts the number of data files on
the disk. This routine is necessary because the information on
the number of data files is used by other parts of the program.
This code is as follows:

6100 REM #»%% FILE COUNTING ROUTINE

61108 TRAP &615@:F=0

£17@ CFEN #4,6,8,"Dr*. *"

61%@ INFUT #4,DIR$:IF DIR$(11,13)<:"TDB" THEN
&£170

£14@ F=F+1:60T0 6130

6150 CLOSE #4:IF PEEK(195)< 3136 THEN 7210
61460 TRAF 7@10:RETURN

Line 6110 changes the location where the program will con-
tinue if an error occurs from its original location at 7010 to line
6150 (the reason for this will be explained in a moment). It then
sets the file counter (F) to zero.

Line 6120 opens the directory so it can be read. Lines 6130-6140
read the directory entries sequentially until the end of the last
file is reached. If the directory listing has the file name extension
“TDB,” one is added to the file counter (F). The program then
goes back to read the next listing. When the program reaches
the end of the directory, an error occurs. But we have changed
the location of the error trapping routine to line 6150, so the
program transfers to this line. This is a forced error (remember,
errors can be our programming friends). We use a forced error
because the directory length is not known, and because we want
this type of error to be handled differently than the other errors.

Lines 6150-6160 close the directory, double check to make sure
there was an “end of file” error, reset the error trapping routine
to line 7010, and return control back to the line that called the file
counting routine.

Screen printing routine

The screen printing routine prints a “generic” screen, whichiis
used by the Question Entry and Question Edit screens. After the
program executes the screen printing routine, the line which
called it displays the additional information that corresponds to
the particular screen. For example, suppose the Question Entry
section of the program calls this routine. Upon returning from
the screen printing routine, the program displays the words

Data Base Subroutines 57

“Question Entry” and the command line ("R:Restart and
“E:Exit), which are those parts of the screen different from the
Question Edit screen.

Following is the code for the screen printing routine:

S200 REM ##% SCREEN PRINTING ROUTINE

£213 FRINT """:FOKE 752,1:PO0SITION 1,1:PRINT "
"3 e FPOSITION 1,22:FRINT " %3
6228 FOR C=2 TO 37:FOSITION C,1:FRINT "=";:F0OS
ITION C,22:PRINT "w"3:NEXT C

627D FOSITION Z8,1:FRINT "4 ";:FPOSITION 28,22:F
RINT "2y

&24@ FOR R=2 70O 21:FPOSITIOM {,R:PRINT CHR%(124
}3:POSITION Z8,R:FPRINT CHR¥(124);:NEXT R

525@ FOSITION 12,2.F INT "TRIVIA DATA BASE"
6268 FPOSITION 1,4:FPRINT "R";:FOR C=2 TO I7:FRI
NT "3 eNEXT C:FRINT "4¢

£27@ FOSITION 3,3:PRINT "QUESTION #":FPOSITION
12,5:PRINT "FILE NAME ";F¥

&28@ POSITION 1,6:FRINT " ";:sFOR C=2 TO I7:FRI
NT "="3;:NEXT C:FRINT "4"

&£278 FOSITION Z,2:FPRINT "QUESTIONT? ¢

&T7D2 FOSITION 14,1@:FOR C=1 TO 22:PRINT "=";:N
EXT C

&71@ FPOSITION 4,12:FOR C=1 TO IZ2:PRINT "™";:NE
XT C
&IZ@ POSITION 1,14:PRINT "§"3;:FOR C=2 70 37:FPR

INT "3 :NEXT C2PRINT "4"

6T5@ POSITION 3,17:PRINT "ANGWER? "

6340 FOSITION 11,18:FOR C=1 TO 25:PRINT "=="3;:N
EXT C

6T5@ FAOSITION 1,2@:PRINT "i';:FOR C=2 TO Z7:FR
INT """z :NEXT C:PRINT “4"
&Z6@8 RETURN

Line 6210 clears the screen, turns off the cursor, and prints the
upper left-hand corner and lower left-hand corner symbols.
Line 6220 uses a FOR...NEXT loop to draw a line across the top
and bottom of the screen. Line 6230 draws the upper right-hand
corner and lower right-hand corner symbols. Line 6240 draws
vertical lines down the sides of the screen.

Line 6250 prints “Trivia Data Base.” Line 6260 uses a
FOR...NEXT loop to draw a line across the middle of the screen.
Line 6270 prints “Question #” and “Filename,” and then prints
the actual file name (F$). Line 6280 uses a FOR...NEXT loop to
draw a line across the screen.

58 Atari Trivia Data Base

Line 6290 displays “Question?”. Lines 6300-6310 contain a
FOR...NEXT loop that draws the two lines for the question. Line
6320 uses a FOR...NEXT loop to draw a line across the screen,

Line 6330 displays “Answer?”. Line 6340 prints the line for the
answer. Line 6350 uses a FOR...NEXT loop to draw a line across
the screen. Line 6360 returns control to the line that called the
screen printing routine.

Question number routine
This routine prints the number of questions to the screen,
using the following code:

4402 REM #*#% QUESTION NUMBER ROUTINE
6418 FPOKE 752,1:POSITION 13,5:PRINT Nj
6428 RETURNM

Line 6410 turns off the cursor. Then using variable N (the
number of questions), it displays the number of questions in the
appropriate position on the screen. Line 6420 returns control to
the line that called this routine.

Blanking routine
The blanking routine blanks the portion of the screen that is
directly above the question and answer line. The code is:

450@ REM *»¥ BLANKING ROUTINE

46510 FOKE 752,1:FPOSITION 14,9:PRINT B£(1,22);:
FOSITION 4,11:PRINT B#(1,32);:FOSITION 11,17:F
RINT B$(1,25);

652@ RETURN

Line 6510 turns off the cursor and blanks the screen above the
question and answer lines by printing a blank string (B$). Con-
trol is then transferred back to the line that called this routine in
line 6520.

Control key routine

The control key routine gets an input from the keyboard and
converts it to an ATASCII character, which can be used by the
data base program. This code is similar to the code for the key
input routine, except this routine also allows the input of control
keys. The code that accomplishes this is:

£60@ REM »»% CONTROL KEY ROUTINE
6613 K=PEEK (7&64):IF K=255 THEN 6610

Data Base Subroutines 59

6620 FOKE 744 ,255:H2=PEEK (K+KS)
&6Z@0 RETURN

Line 6610 PEEKs to memory location 764 and sets K (the vari-
able for the keypress scan code) equal to the scan code of the
last key pressed. If no key was pressed, K is equal to 255 and the
routine calls itself (is repeated).

After a key has been pressed (thus, K has a value not equal to
255), line 6620 puts a value of 255 into location 764 to signify that
we have already read the keypress. Then line 6620 adds K to our
KS (keystart) and PEEKs to find the ATASCIH code (K2) corre-
sponding to the keystroke. Line 6330 transfers control to the line
that called the control key routine.

File name routine

The file name routine converts the file name you chose when
you loaded an old file, created a new file, or deleted an old file to
a file name that can be used by the data base program. The code
is:

6700 REM »#»% FILE NAME ROUTINE
671@ DIRF(1,2)="D:":DIRF(Z,LEN(F$)+I)=F¥:DIR*(
LEN(FS)+3,LEN(F$)+7)="_TDB": DIR$(LEN (F$)+7,20)

/oy
=i "

6728 RETURN

Line 6710 converts F$ into a valid name (DIR$) that can be used
to open the data file. Line 6720 transfers control to the line that
called the file name routine.

Question print routine
The question print routine is actually two short routines that

print the question or the answer to the screen. These two
routines are:

6£80@ REM #%% QUESTION PRINT ROUTINE

6818 FOKE 7Z2,1:POSITION 14,7:PRINT @%(1,22)3:
FPOSITION 4,11:PRINT QF(23,54) ; : RETURN

4820 FOrE 7S2,1:POSITION 11,17:FRINT A%;:RETUR
N

Line 6810 turns off the cursor, prints both lines of the question
(Q%) to the screen, and then transfers control to the line that
called the question print routine.

60 Atari Trivia Data Base

Line 6820 turns off the cursor, prints the answer (A$) to the
screen, and then transfers control to the line that called this
routine.

Number length routine

The number length routine converts the number of questions
in a file into a string variable that is three characters long. (A
string variable can be identified by the fact that it ends with a “$"”
character. Simply put, a string variable can contain alphabetic or
numeric characters that are not interpreted numerically.
Another type of variable is numeric. This type of variable can’t
have letters or words assigned to it. Thus, a numeric string
assigned a value of “1” can be used for calculations, whereas a
string variable assigned a value of “1” regards the “1” not as a
quantity but as a character. But, | digress). The string variable is
three characters long because the first record of the file is always
three spaces long; if we printa number out to the file that is less
than three characters, the file structure will be destroyed. The
code for the number length routine follows:

6708 REM =*x NUMBER LENGTH ROUTINE

6710 NF=STRF(N): IF N<1@@ THEN NF(3,3)=" ":IF N
1@ THEN NE(2,2)=" "

£5920 RETURN

Line 6910 converts N, the number of questions, to N$, the
string representation of the number of questions. Line 6920
transfers control back to the line that called the number length
routine.

Error trapping routine

This routine “traps” any execution errors, except for forced
errors or input errors (where the error trap has been temporarily
set to a different line number).

TO@2 |SEM +x» DISK ERROR ROUTINE

701@ TRAF 7Q08@:FOKE 752,1:PRINT "T":E=FPEEK (195
Y:FOSITION 7,&:PRINT "ERROR "3;E:;" AT LINE ";PE

Et (186) +FEEK (187) #2546

782Q@ IF E=162 THEN POSITION 14,8:FRINT "DISK F

ULt ":640T1T0 7040

70Z@ IF Ex18 THEN POSITION 13,8:FPRINT "DISK ER

ROR"

78342 FOSITION 12,11:PRINT “PRESS ANY KEY":FOEKE
764 ,255: 605UB &@13:CLOSE #4:CLOSE #3

Data Base Subroutines 61

7@E5@ IF E=144 THEN 8010
7368 RUN

Line 7010 first sets an error trap that will re-run the data base
program if there is an error while this routine is running. It then
prints the error number (E) and the line where the error
occurred. If E = 162, then it’s a “disk full” error and line 7020
prints “disk full.” If E > 18, then it’s a “disk error” and line 7030
prints “disk error.” Line 7040 then prompts to continue the
program.

If E = 144, it’s a “disk not present” or “disk write-protected”
error and line 7050 causes the program to end. If it’s not either
error, line 7060 re-runs the program. Consult your Atari manual
for actual error codes to determine the problem.

This completes the code explanation for the data base pro-
gram. Next, we will look at the random inquiry and scorekeep-
ing program (the trivia game) using the same techniques
employed in the preceding chapters. We're having some fun
now!

Chapter 8
Game Analysis

Now we’ll examine the trivia game program in detail. Refer to
Apppendix A and Flowchart 2-A. Subroutines are described in
Chapter 9.

Initialization

The beginning of the trivia game program is the initialization.
This section of code sets up the key conversion routine, and
initializes the variables and error trapping.

10@ DIM KEY1%$(&4) ,KEYZF (64)

110 KEY1$="1LJ; K+*0 PU I-=V C BXZ4 3I& 52
N M/ R EY TWE9 @7 8<:FHD GSA"

120 KEY2f="LJ: K\"D PU I_iV C BXZ% #% % '[1
N M? R EY TWG()° @ FHD GSA"

170 KS=PEEL (141) *256+PEEK (14@)

140 POKE KES+94,34

15@ DIM DIR$(2Q®) ,0%(54) ,A$(25) ,BF(S54) ,F$(3),S¢(
100} ,B(100) ,GF(25) ,NF(T)

160 DIM NM1$(10) ,NM2£(10) ,NMI$(1@) ,NM4$(1@) ,NM
£(48) ,P(4)

170 FOR L=1 TO S4:B#{L,L)=" ":NEXT L:Q¥=B$:As$=
BF(1,05) : GE=A%$: NMF=E$(1,4@)

130 GRAFHICS @:TRAF 7012

190 FOKE 16,54:FOKE S3774,64

v -

Now, pull out Flowchart 2-B. We first set up the key conver-
sion routine (lines 100-140). (See the Initialization section in
Chapter 5 for a more complete description.) Line 100 dimen-
sions 128 spaces in memory. ATASCII character are put into the
space (lines 110-120); their position is determined by their Atari
keyboard scan codes. Line 130 loads the starting location of
these dimensioned characters in variable KS (the memory loca-
tion where ATASCII characters are stored). This is done because
the memory location of an ATASCII character can be derived by
adding its scan code (K) to KS and PEEKing into memory. We
have to do this because the scan codes do not follow in logical
order. Line 140 places the ATASCII representation for a quote
mark into the reserved area.

63

64 Atari Trivia Data Base

Lines 150-170 initialize the string and array variables that are
used by the program. The string variables must be initialized to
blanks because this is not done automatically by the Atari.

Line 180 sets the screen defaults to mode 0 and turns on the
error trapping routine at line 7010. Line 190 disables the break
key. This ensures that the program will not be stopped
accidentally.

Choosing a file

When the program begins, we are presented with the File
Choice Menu (see Fig. 8-1 and Flowchart 2-C).

T

TRIVIA GAME
FILE CHOICES

1. filename
2. filename

0. EXIT
PRESS 0-r)

-~

Fig. 8-1. File Choice Menu.

The code that displays the menu and allows the file choice is:

120@ REM =xx FILE CHOICE MENU

1213 FPOKE 7S2,1:FPRINT "T":POSITION 12,2:FRINT
"TRIVIA GAME™"

1@15 POSITION 12,4:FRINMT “"FILE CHOICES":G0SUB
&11@:IF F>9 THEN F=9

1229 IF F=0 THEN 12002

1370 OFEN #4,5,@,"D:*.TDB":FOR L=1 TO F:INFUT
#4 ,DIRF:FCSITICON 12,L+5:FRINT L;". ":DIR#%¥(3Z,10
Y:NEXT L:CLOSE #4 .

1935 FCSITION 12,F+7:PRINT "@. EXIT"

1248 FOSITION 12,F+2:PRINT "PRESS (@-"3;F;")"
1350 GOSUER &@1@: IF KZ2<48 OR KZ:F+48 THEN 1050
1355 1IF £2=48 THEN 8010

1868 OFEN #S5,4,0,"D:*.TDR"

Game Analysis 65

107@ FOR L=1 TO K2-48: INPUT #S5,DIR#:NEXT L:CLO
SE #S5:F¥=DIR¥(Z,11)

1280 IF FERLENF$) ,LEN((F£))Y=" " THEN F$=F¥%(1,L
EN(F$)-1):607T0 1080

1890 GOSUR &71@:0PEN #5,4,0,DIR$: INFUT #5S;M#:C
LOSE #S:MN=VAL (N¥):IF N<20 THEN 1250

1188 GOTO 2010

1208 FOSITION 8,6:PRINT "NO DATA FILES ON DISH
":POSITION 5,9:PRINT "YOU MUST SWITCH DATA DIS
ES™

121@ POSITION 8,1@:FPRINT "AND TYFPE "RUN’ AGAIN
":POSITION 17,12:PRINT "OR"

12208 POSITION 12,14:FPRINT "LOAD AND RUN":POSIT
ION 8,15:FPRINT "THE DATA BASE FROGRAM"

1238 FOSITION 12,19:PRINT "FRESS ANY KEY":G60S5U
B 4£01@:G0T0 8010

125@ PRINT "%":POSITION S5,8:FRINT "TOO FEW QUE
STIONS IN THE FILE":POSITION 12,9:PRINT "TO PL
AY A GAME"

1260 POSITION 12,11:FRINT "PRESS ANY KEY":GOSU
B 6010:6G07T0 101@

First, line 1010 clears the screen and displays “Trivia Game.”
Line 1015 displays “File Choices,” calls the routine at line 6110 to
count the number of files on the disk, and sets the maximum
number of files to nine.

If there are no files on disk (F = 0), line 1020 transfers control
to lines 1200-1230. This section displays a “no files” message,
gives you the options at this point, waits for a keypress to
continue, and transfers control to line 8010 to exit the program.
If there are one or more files on disk, line 1030 opens the
directory for file names with the extension “TDB” and uses a
FOR...NEXT loop to display these file names. It then closes the
directory.

Lines 1035-1040 print the exit option on the screen and the
prompt message to press a key.

Line 1050 calls the key input routine at line 6010 to get your
choice. Itthen checks the validity of the keypress. If your choice
is invalid (i.e., not one of the choices displayed) the key input
routine is again called. If you pressed option 0, line 1055 trans-
fers control to line 8010 to exit the program.

tf your choice is valid and your input is not zero, the following
lines are executed. Line 1060 re-opens the directory. Line 1070
reads in the file name you chose (F$), and line 1080 removes the

66 Atari Trivia Data Base

blanks in the file name. Line 1090 calls the file name routine at
line 6710.

Upon return from the routine, line 1090 opens the data file,
inputs the number of questions, and checks to see if N (the
number of questions) is greater than 19. If it’s not, control is
transferred to lines 1250-1260, which print a “too few questions
to play game” message, prompt the user to press a key to
continue, and then return to the File Choice Menu. If N is
greater than 19, line 1100 transfers control to line 2010 for name
entry.

Entering names

After you choose a file, the trivia game program prompts you
to enter the players’ names.
The code for entering names is:

2000 REM ##*% NAME ENTRY

2018 POKE 752,1:PRINT uqn

7020 POSITION 13,2:PRINT "TRIVIA GAME"

2070 POSITION 4,3:PRINT "HOW MANY FLAYERS? PR
ESS 1 TO 4"

2040 GOSUB &£Q@18:P=K2-48:IF FP<1 OR P>4 THEN 204
2

205@ POSITION 2,20:PRINT “NAMES MAY ONLY BE 10
CHARACTERS LLONG":FOKE 732,0

2060 TRAFP 2060:FPOSITION Z,8:FRINT "ENTER FLAYE
R 1°'S NAME ";:INPUT NMi¥:IF NMi$f="" THEN 2040

2870 IF F=1 THEN 2130

2080 TRAF Z208@:F0OSITION Z,1@3:FRINT “"ENTER PLAY

ER 25 NAME ";:INFUT NM2%:IF NMI2$="" THEN 2080

209@ IF P=2 THEN 2170

2100 TRaAFP 2108:FOSITION Z,12:FRINT "ENTER FLAY

ER I°S NAME ";:INPUT NMI#$:IF NM3IF="" THEN 2100

2110 IF FP=T7 THEN 2130

2120 TRAF 2128:F0OSITION Z,14:PRINT "ENTER FLAY

ER 4°'S MAME ";:INPUT NM4A¥:IF NM4x="" THEN 2120

2170 TRAFP 7Q@1Q@Q:FOKE 732,1:NM¥(1,1@)=NM1E:NM$ (1
1,20)=NMI2F:NMF (21 ,20)=NMIF: NMF (31 ,40)=NM4%

See Flowchart2-D. Line 2010 turns off the cursor and clears the
screen. Line 2020 prints the introductory message “Trivia
Game.” Line 2030 asks “How many players?” and prompts you to
press a key from 1 to 4. Line 2040 calls the key input routine at
line 6010, which gets your input. Upon returning from this

Game Analysis 67

routine, line 2040 then converts the ATASCII keypress (K2) into a
number of players variable (P), and checks to make sure P is
between1and4. If Pisn't between 1and 4, line 2040 calls the key
input routine again. If P is between 1 and 4, line 2050 prints a
message at the bottom of the screen that reminds the users that
the players’ names cannot be longer than 10 characters. It then
turns on the cursor.

Line 2060 inputs the first player’s name into variable NM1$; if
NMT1$ is blank, the line is re-run. If there is only one player, line
2070 transfers control to line 2130. Line 2080 places the second
player’'s name into variable NM2$; if NM2$ is blank, the line is re-
run. If there are only two players, line 2090 transfers control to
line 2130. Line 2100 inputs the third player’s name into variable
NM3$; if NM3$ is blank, the line is re-run. If there are only three
players, line 2110 transfers control to line 2130. Line 2120 puts the
fourth player’s name into variable NM4$; if NM4$ is blank, the
line is re-run.

Each of the above input lines (2060, 2080, 2100, 2120) is trapped
to itself in case of an input error. That is, if there is an input error,
control will not transfer to the error trapping routine, instead
the question will be asked again. Line 2130 resets the error trap
to line 7010. It then turns off the cursor and stores all the names
into one string called NM$.

Playing the game

Now on to the code for the actual play of the trivia game:

TO2@ REM =%x GAME
I@1@ FOKE 732,1:FPRINT "W"
I@2@ FOSITION 11,8:FRINT ".... FLEASE WAIT":FO
SITION 12,11:FRINT "INDEXING DATA"
@@ OFEN #4,12,0,DIR¥: INFUT #4 ,NE:N=VAL (N¥):F
OR L=1 TO N:NOTE #4,X,Y:S(L)=X:B(L)=Y: INPUT #4
LAF,AFINEXT L
Z@4@ FOSITION 10,14:FRINT "ORDERING QUESTIONS"
I@50 FOR L=1 TO N:S(@)=5L):B(@)=B(L):R=INT (RN
DY *ND +1:5(L)y=S(R) : B(L)=B{R) : S(R)=S(@):B(R)=B
(@) :NEXT L
IR&6@ FRINT "T":G05UB 5210:M=@:P(1)=0:FP(2)=0:F(
I =@:F{(4)=0
378 FOR L=1 TO F+*35:GOSUBR 4£410Q
Z@75 FL=1:IF RND(1)<@.1 THEN FL=2:FOSITION 1@,
15:FRINT "“BONUS FPOINT QUESTION"

cont. on next page

68 Atari Trivia Data Base

Z@8@ M=M+1:IF M=P+1 THEN M=1

Z@9@ FOSITION 3,4:PRINT "GET READY ";NM$ (M*10-

7,M*1@) :FOR D=1 TO Z0@:NEXT D

I10@ FOSITION 3,4:PRINT "GET SET “;NM$ (Mx10-9,

M#1@); " “:FOR D=1 TO 20@:NEXT D

T11@ POSITION 3,4:PRINT "GO ";NM$(M*10-9 ,M*10)

s

312@ POINT #4,S(L),B(L):INPUT #4,0%,A%:G50SUB &

810

3138 T=0:Z=S0@:POKE 752,@:FOSITION 1@,12:PRINT

314@ GOSUB &61@:IF Z=0 THEN 3200

315@ IF K=12 THEN 3200

T16@ IF K=S2 AND T>@ THEN POSITION T+18,12:FRI

NT " €";:G$(T,T)=" “:T=T-1:GOTO 3140

317@ IF T=25 THEN 3140

3188 IF K2=32 AND K<:33 THEN 3140

3190 T=T+1:G%(T,T)=CHR$(K2) :POSITION T+1@,12:P

RINT CHR#$(K2);:GOTO 3140

I20@ POKE 752,1:1IF G$<:A$ THEN 3220

I21@ POSITION 7,1S5:PRINT “CORRECT - “; INT (Z*FL

/2@);" FOINTS SCORED":P (M)=P (M)+INT (Z#FL/2@):6G

OSUB 641@:G0TO 3320

z27@ POSITION 1@,1S5:PRINT " INCORRECT ANSWER

I30@ FOR D=1 TO Z@@:NEXT D:POSITION 3,15:PRINT
BF(1,74) :G$=B$ (1,25) : GOSUB 451@:POSITION 33,4

:PRINT 25

3318 NEXT L

IT2@ FOSITION 6,1S5:PRINT "GAME OVER —-—— FRESS

ANY KEY":POKE 764,255:G0SUB &@10:CLOSE #4

ITI@ FRINT """:POSITION 14,S5:PRINT "RANKING"

IZ4@ FOR L=1 TO P:POSITION 1@,L+6:M=1:FOR L2=1
TO F:IF P(L2) P (M) THEN M=L2

ITS@ NEXT L2:PRINT NME(M*10-9,M%1@);" ";P (M)

tP(M)=—1:NEXT L

II6@ POSITION 12,P+8:FRINT “FRESS ANY KEY":POK

E 7644,255:GOSUE 5010

II7@ PRINT "% :POSITION S,S5:PRINT "PLAY AGAIN?
PRESS Y OR N"

3380 GOSUR 4@1@:IF K2=78 THEN 8010

3ITI9@ IF K2<:>89 THEN 37280

340@ FOSITION 2,8:PRINT "SAME FLAYERS AND FILE

? PRESS Y OR N"

I41@ GOSUB 4@1@: IF K2=78 THEN RUN

3I420 IF K2::89 THEN 3410

I47Q0 OPEN #4,172,0,DIR$:GOTO 3040

Game Analysis 69

Refer to Flowchart 2-E. First, line 3010 turns off the cursor and
clears the screen. Lines 3020-3050 set up the data. Line 3020
prints a “please wait” message and an “indexing data” message.

Line 3030 opens the file and uses a FOR...NEXT loop to index
the data by recording the sector and byte location of each
question in variables 5(100) and B(100). Line 3040 prints an
“ordering questions” message. Here is another “pacifier” mes-
sage, which you can easily customize with virtual impunity. Line
3050 uses a FOR...NEXT loop and the random number R to
randomly order the questions. Then line 3060 clears the screen
and prints the trivia Game screen (see Fig. 8-2). It then sets the
current player number (M) to zero and resets the players’ scores
P(1), P(2), P(3), and P(4).

TRIVIA GAME

GO name TIMER: n
QUESTION:
ANSWER?
PLAYER'S NAME SCORE
HARRY 40
JoE 8(5

Fig. 8-2. Game screen.

Line 3070 starts the FOR...NEXT loop for 5 questions per
player per game. It then calls the routine at line 6410, which is a
score printing routine.

Line 3075 sets the flag (FL) = 1 for keeping score. Then, if the
random number (RND(1)) is less than .1, FL is set to 2 (for double
score), and a “bonus point” message is printed. Briefly stated,
the function RND(1) will generate a random number between 0
and 1. If you want more frequent bonus questions, change the
test on RND(1). As listed, 10% of the questions will be double
score value. Line 3080 increments the current player number (M)
and, if M is greater than P (number of players), then M is set to
one.

70 Atari Trivia Data Base

Line 3090 prints a “get ready” message and pauses with a
FOR...NEXT loop. Line 3100 prints a “get set” message and
pauses with a FOR...NEXT loop. Line 3110 prints a “go” message.
Line 3120 inputs the current (L) question (Q$) and answer (A$),
and calls the routine at 6810 to print the question to the screen.

Line 3130 sets the number of characters in the guess (T) to
zero, sets the timer variable (Z) to 500, turns the cursor on, and
locates the cursor on the guess (answer) line. Line 3140 calls the
control key timer routine at line 6610, which gets the keypress
and keeps track of the time remaining. If Z = 0 (time has
expired) upon return from the routine, line 3140 transfers con-
trol to line 3200.

If <RETURN> is pressed (K = 12), line 3150 transfers control to
line 3200.

If <BACKSPACE> is pressed and T > 0 (number of characters
in guess greater than zero), line 3160 prints a backspace. Then
the character that was backspaced over is blanked from the
guess, T is decremented, and control is transferred to line 3140
to get a new keypress.

Line 3170 only allows a <BACKSPACE> or <RETURN> if T =
25 (the guess line is full). Line 3180 checks to make sure that,
when K2 (the ATASCI! keypress) equals 32 (a space), K (the key’s
scan code) equals 33 (scan code for a space). This ensures that
when the returned ATASCII keypress is 32, the space bar was
pressed and not a special key, such as <TAB> (see the Initializa-
tion section in Chapter 5). If K2 doesn’t equal 32 and K doesn't
equal 33, control is transferred to line 3140 to get another
keypress.

Line 3190 increments the number of characters (T), adds the
keypress (CHR$(K2)) to the guess string (G$), and prints the
character to the screen. It then transfers control to 3140 to get
another keypress.

Line 3200 turns off the cursor and compares G$ and A$. If they
are not equal, control is transferred to line 3220. Once you feel
really comfortable with the existing code and get an ambitious
urge, try modifying the code to allow for a beginner’s and
expert’s game as follows. Parse (dissect) the input answer, and
compare it with word one and word two of the correct answer. In
a beginner’s game, only one word has to match. For experts, it
must be exactly correct. For example, let’s say the correctanswer
is “John Brown.” The beginner’s version would give credit for

Game Analysis 71

either word; the expert would have to have both answers cor-
rect. But back to the explanation of the code as written.

Line 3210 prints a “correct” and “points scored” message, and
increases the player’s score. It then updates the screen with the
score printing routine (see Chapter 9), and transfers control to
line 3300.

Line 3220 prints an “incorrect answer” message. Here is
another candidate for code modification. You may wish to show
the correct answer at this point. Line 3300 delays, blanks the
message that was printed and the guess, and calls the blanking
routine at line 6510. Line 3300 then prints the timer back to 25.
Line 3310 is the point where the decision is made as to whether
the FOR...NEXT loop is completed. It goes back to line 3070 if
the loop has not been completed; line 3320 is executed if it has.

Line 3320 prints the “game over” message, prompts you to
press a key to continue, and closes the file.

Line 3330 clears the screen and prints a “ranking” message.
Lines 3340-3350 use a double FOR...NEXT loop to print the
players’ names and scores in the proper ranking (descending
order).

Line 3360 prompts you to press a key to continue. Line 3370
clears the screen and prompts you to play again by pressing Y or
N. Line 3380 calls the input routine and, if the choice is “N”, exits
the program. If the choice was not “Y"”, line 3390 calls the input
routine again (because it was an invalid input).

Line 3400 (“Y” was pressed) prompts the user to see if the
same names and file will be used. Line 3410 calls the input
routine and, if the choice is “N”, re-runs the program. If the
choice was not “Y”, line 3420 calls the input routine again
(because it was an invalid input). Line 3430 re-opens the file and
transfers control to line 3040 to re-order the questions and play
again.

Exiting the program
And, at last, here’s the code for ending the program:
8008 REM #**x EXIT

801@ PRINT "T":POKE 16,192:POKE S53774,247:POKE
752,0@:END

Line 8010 clears the screen, turns on the cursor, enables the
<BREAK> key, and ends the program.

72 Atari Trivia Data Base

This completes the explanation of the trivia game program. In

the next chapter, we’ll describe the subroutines used by the
triviagame.

Chapter 9
- Game Subroutines

By writing our subroutines as globally as possible, we are able
to reuse many of them from the data base program in the game
program. Any similarities are intentional.

Key input routine

The key input routine gets an input from the keyboard and
converts it to an ATASCII character, which can be used by the
trivia game program. The code that accomplishes this is:

L0000 REM *x# FEY INFUT ROUTINE
6818 F=FEEE (764):IF K>127 THEM 4010
4028 POKE 764,255: K2=PEEK (K+KS5) : RETURN

Line 6010 PEEKs to memory location 764 and sets K (the vari-
able for the keypress scan code) equal to the scan code of the
last key pressed. If no key was pressed, K = 255. If K > 127, a
control key or no key (which are not valid keypresses in this
instance) was pressed and the routine calls itself (is repeated).

After a valid key is pressed (thus, K has a value less than or
equal to 127), line 6020 places a value of 255 into location 764,
which signifies that we have already read the keypress. Then line
6020 adds K to our KS (keystart) and we PEEK to find the ATASCII
code (K2) corresponding to the keystroke. Line 6020 then
returns to the line that called the key input routine.

File counting routine

The file counting routine counts the number of data files on
the disk. This routine is necessary because if there are no files on
disk, you can’t play the game. The code is:

5108 REM *%% FILE COUNTING ROUTINE

&£11@ TRAF 6150:F=0

6128 OFEN #4,6,@,"D:%.#"

61Z@ INPUT #4,DIR*:IF DIR$(11,13)<>"TDB" THEN
617

6148 F=F+1:G0T0 6130

615@ CLOSE #4:IF FPEEK(195)<>13& THEN 7010
6160 TRAF 7@10:RETURN

73

74 Atari Trivia Data Base

Line 6110 changes the location where the program will con-
tinue if an error occurs from its original location at 7010 to line
6150 (the reason for this will be explained in a moment). It then
sets the file counter (F) to zero.

Line 6120 opens the directory so it can be read. Lines 6130-6140
read the directory entries sequentially until the end of the last
file is read. If the directory listing has the file name extension
“TDB”, one is added to the file counter (F). The program then
goes back to read the next listing. When the program reads the
end of the last file, an error occurs. This causes the error trap at
line 6150 to get program control. This is a forced error, which
must be used because we don’t know the length of the
directory.

Lines 6150-6160 close the directory, double check to make sure
there was an “end of file” error, reset the error trapping routine
to line 7010, and return control back to the line that called the file
counting routine.

Screen printing routine
This routine prints the Game screen using the following code:

6200 REM *** SCREEN PRINTING ROUTINE

621@ FRINT "7":POKE 752,1:POSITION 1,1:FRINT
"3 :POSITION 1,22:PRINT "o";

622@ FOR C=2 TO 37:POSITION C,1:PRINT "-";:PQOS
ITION C,22:FRINT “~";:NEXT C

623@ FOSITION 38,1:FPRINT "4%;:FOSITION 38,22:P
RINT "a";
624@ FOR R=2 TO 21:FOSITION 1,R:PRINT CHR¥ (124
)3 :FOSITION I8,R:PRINT CHR¥(124);:NEXT R

625@ FOSITION 15,2:FRINT “TRIVIA GAME"

6260 POSITION 1,3:FRINT "3";:FOR C=2 TO 3I7:FRI
NT "="3:NEXT C:PRINT "4

627@ FOSITION 25,4:FRINT "TIMER: 25"

6280 FOSITION 1,5:PRINT "}';:FOR C=2 TO 3I7:FRI
NT “="3:NEXT C:PRINT "{"

629@ POSITION 3,7:PRINT "QUESTION:"

630@ POSITION 14,8:FOR C=1 TO 22:PRINT "=";:NE
XT C

631@ POSITION 4,1@:FOR C=1 TO 32:PRINT "=";:NE
XT C

2@ POSITION 1,14:PRINT "}';:FOR C=2 TO I7:FR
INT "="3:NEXT C:PRINT "4"

633@ POSITION 3,12:PRINT "ANSWER?":FOSITION 11
,13:FOR C=1 TO 2S:PRINT "=";:NEXT C

Game Subroutines 75

4340 POSITION 1,16:FRINT "F';:FOR C=2 TO ZI7:PR
INT "3 :NEXT C:FPRINT "4"

&35@ POSITION S,17:FPRINT “PLAYER'S NAME","SCOR
E" ’

&6Z6@ FOSITION 8,18:FPRINT NMif$:POSITION 8,19:FR
INT NM2#:POSITION 8,20:PRINT NMZ$:FOSITION 8,2
1:PRINT NM4F

678 RETURN

Line 6210 clears the screen, turns off the cursor, and prints the
upper left-hand corner and lower left-hand corner symbols.
Line 6220 uses a FOR...NEXT loop to draw a line across the top
and bottom of the screen. Line 6230 draws the upper right-hand
and lower right-hand corner symbols. Line 6240 draws vertical
lines down the sides of the screen.

Line 6250 prints “Trivia Game.” Line 6260 uses FOR...NEXT
loops to draw a line across the middle of the screen. Line 6270
prints “Timer: 25”. Line 6280 uses a FOR...NEXT loop to draw a
line across the screen. Line 6290 displays “Question:”. Lines
6300-6310 use a FOR...NEXT loop to draw the two lines for the
question. Line 6320 uses a FOR...NEXT loop to draw a line across
the screen. Line 6330 displays “Answer?” and the line for the
guess. Line 6340 uses a FOR...NEXT loop to draw aline across the
screen. Line 6350 prints “Player’s Name” and “Score.” Line 6360
prints the players’ names (NM1$, NM2$, NM3$, and NM4$, to
the screen. Line 6370 returns control to the line that called the
screen printing routine.

Score printing routine

This routine updates the current score to the screen. The code
follows:

5408 REM #*x#% SCORE FRINTING ROUTINE

641@ FOKE 7352,1:FOSITION 26,18:PRINT P(1):IF P
*1 THEN POSITION 26,19:PRINT P(2)

6420 IF P:>2 THEN POSITION 26,20:PRINT P(3):IF
F>Z THEN FPOSITION 2&6,21:FRINT P(4)

6470 RETURN

Line 6410 turns off-the cursor, prints the first player’s score
(P(1)), and if there is a second player, it prints the second player’s
score (P(2)). If there is a third player, line 6420 prints the third
player’s score (P(3)); if there’s a fourth player, it also prints the
fourth player’s score (P(4)). Line 6430 returns control to the line
that called this routine.

76 Atari Trivia Data Base

Blanking routine
The blanking routine blanks the portion of the screen that is
directly above the question and answer line. The code is:

6500 REM *#*% BLANKING ROUTINE

&51@ POKE 752,1:POSITION 14,7:PRINT B$(1,22);:
FOSITION 4,9:PRINT B$(1,32);:POSITION 11,12:FPR
INT B$(1,25);

&£52@ RETURN

Line 6510 turns off the cursor and blanks the screen above the
question and answer lines by printing a blank string (B$). Line
6520 transfers control back to the line that called this routine.

Timer key routine

The timer key routine gets an input from the keyboard and
converts it to an ATASCII character, which can be used by the
trivia game. This code is similar to the code for the key input
routine, except this routine keeps track of the elapsed time
between when the question was printed and <RETURN> was
pressed. The code that accomplishes this is:

L@@ REM *#% TIMER-KEY ROUTINE

661@ K=PEEK (764):Z=Z-1:POKE 752,1:POSITION 33,
4:FPRINT INT(Z/2@);" “;:POKE 752,8:POSITION T+
11,12: PRINT " &";

6620 IF Z=@ THEN 6650

6638 IF K=255 THEN 6410

6640 E2=FEEK (K+KS)

665@ FOKE 764,255:RETURN

Line 6610 PEEKs to memory location 764 and sets K (the vari-
able for the keypress scan code) equal to the scan code of the
last key pressed. It then decrements the time counter (Z), turns
off the cursor, and prints the time remaining (INT(Z/20)). Line
6610 then turns on the cursor and places it on the guess line.
Line 6620 checks to see if Z = 0. If so, control is transferred to
6650. If no key was pressed, K = 255 and line 6630 re-calls the
routine. The technical term for this condition is “running out of
time.”

After a key has been pressed (thus, K has a value not equal to
255), line 6640 adds K to our KS (keystart) and PEEKs to find the
ATASCII code (K2) corresponding to the keystroke. Line 6650
POKEs a 255 into location 764 to signify that we have already read

Game Subroutines 77

the keypress, and transfers control to the line that called the
timer key routine.

File name routine

The file name you chose to play the trivia game program has to
be converted to a file name that can be used by the game. The
file name routine does this conversion using the following
code:

6788 REM *x# FILE NAME ROUTINE
6718 DIR¥(1,2)="D:":DIR$ (T, LEN(F$)+3)=F#:DIR%(
LENC(FE)+Z,LEN(F$)+7)="_TDB" : DIR$ (LEN (F#$) +7 ,2@)

—_n o

6728 RETURN

Line 6710 converts F$ into a valid name (DiR$) that can be used
to open the data file. Line 6720 transfers control to the line that
called this routine.

Question print routine
The question print routine prints the question to the screen.
The code follows:

4808 REM »%% QUESTION PRINT ROUTINE
681@ POKE 752,1:POSITION 14,7:PRINT @$(1,22)::
FOSITION 4,9:PRINT B%(23,54);:RETURN

Line 6810 turns off the cursor and prints both lines of the
question to the screen (Q$). Line 6810 transfers control to the
line that called this routine.

Error trapping routine

This routine “traps” any execution errors, except for forced
errors or input errors (where the error trap has been temporarily
set to a different line number).

7008 REM »%¥ DISK ERROR ROUTINE

7810 TRAP 70S@:POKE 752,1:PRINT "7T":E=PEEK (195
J:POSITION 9,4:PRINT "ERROR "“3;E;" AT LINE ":;PE

EK (184) +PEEK(187) #2556

7828 IF E>18 THEN POSITION 13,8:PRINT "DISK ER

ROR"

783@ FOSITION 12,11:PRINT “PRESS ANY KEY":FOKE
764,255: GOSUB &01@:CLOSE #4:CLOSE #5

cont. on next page

78 Atari Trivia Data Base

7848 IF E=144 THEN 8010Q
7850 RUN

Line 7010 first sets an error trap that will re-run the trivia game
program if there is an error while this routine is running. It then
prints the error number (E) and the line where the error
occurred. If E > 18, it’s a disk error and line 7020 prints “disk
error.” Line 7030 then prompts to continue the program.

If it's a “disk not present” error or a “disk write-protected”
error, E = 144 and line 7040 causes the program to end. If it’s not
either error, line 7050 re-runs the program. Consult your Atari
manual for actual error codes to determine the problem.

This completes the code explanation for the trivia game pro-
gram. Because we now have the data base program and game
program under our belt, it'’s time to use them! So, let’s look at
the instructions for using the data base program (Chapter 10)
and playing the game (Chapter 11). We're really going to have
some fun now, boy.

Chapter 10
Using the Data Base

As noted earlier, the Trivia Data Base is the program used to
store your questions and answers. You can have up to 100
questions per file, and usually up to 8 files on a disk. This
chapter demonstrates how easy the program is to use.

The data base is totally menu driven. This means that you are
able to select the process that you want to perform on the data
base. Type RUN “D:DATABASE” and press <RETURN> to run
the database program. (See the Loading Instructions section at
the front of the book for more complete instructions.) Once the
program is loaded, you are presented with the Main Menu. See

Fig. 10-1.

TRIVIA DATA BASE
MAIN MENU

1. LOAD OLD FILE

2. CREATE NEW FILE

3. DELETE FILE

4. EXIT PROGRAM

PRESS (1-4)

_‘/

Fig. 10-1. Main Menu.

From this menu you select whether you want to load and work
on a trivia file that has already been created with this program,
create a new trivia file, delete a trivia file, or exit the data base
program. Because this is your first time using the data base,
you’ll want to select option #2, Create New File, but before
doing that, we’ll explain each option.

79

80 Atari Trivia Data Base

#1. Load file

This option allows you to load a trivia file into memory so you
are able to add new questions to the file or change questions
and answers. Once this option is chosen, the File Choice Menu
is displayed (see Fig. 10-2). After you choose a file, and the file is
loaded, the Edit Menu is displayed. We will describe the Edit
Menu options at the end of this chapter.

T

FILE CHOICES

1. filename
2. filename

0. EXIT
PRESS (0-n)

~_

Fig. 10-2. File Choice Menu.

#2. Create new file

This option allows you to create a new file. A file can contain
100 questions and answers at most. Go ahead and select this
option now. You will be prompted to enter the name of the file
you want to create. Important Note: file names can only contain
capital letters! After entering the file name, the Edit Menu is
displayed.

We will look at each of the four selections given in Fig. 10-3
subsequently. For now, we will describe the two remaining
options on the data base Main Menu.

#3. Delete file

To delete a file, you would choose option #3 from the Main
Menu. After you have chosen this option, the File Choice Menu
is displayed. Refer back to Fig. 10-2. Press the number corre-
sponding to the file you want to delete. The screen will display a
message for you to confirm that you indeed want to delete the

Using the Data Base 81

file (once it’s gone, it's gone). If you press “N” the program
returns to the Main Menu. If you press “Y” that file is deleted
and the program returns to the Main Menu.

#4. Exit program

Selection #4 from the Main Menu ends the program. After
you choose this option, the screen will display “Ready.” This
indicates that the computer is in Atari BASIC.

Enter and edit data

After you choose option #1 or #2 from the Main Menu, load a
file or create a file, the Edit Menu is displayed. See Fig. 10-3.
From the Edit Menu, you can enter new data into the data base,
edit existing data, or return to the Main Menu.

TRIVIA DATA BASE

CURRENT FILE — filename
OF QUESTIONS — n

EDIT MENU
1. ENTER DATA
2. EDIT DATA
3. RETURN TO

MAIN MENU

PRESS (1-3)

-~

Fig. 10-3. Edit Menu.

#1. Enter data

This is the first thing you need to do when creating a new file.
This selection allows you to enter new questions and answers to
the triviafile. To let you know how many questions are in thefile,
the current question number is always displayed while you are
adding new questions. The screen for adding the questions and
answers is shown in Fig. 10-4.

First take a look at the bottom of the screen shown in Fig. 10-4.
The bottom of this screen contains two keys. They are "R
(restart) and "E (exit). The " stands for the <CONTROL> key.

82 Atari Trivia Data Base

TRIVIA DATA BASE

QUESTION ENTRY
QUESTION #n FILE NAME filename

QUESTION?

ANSWER?

AR: RESTART AE EXIT

Fig. 10-4. Question Entry screen.

By pressing the <CONTROL> key and the <R> key simul-
taneously, you can restart the entry of the question and answer.
In other words, if you are typing a question or an answer, and
you want to begin over, "R erases what you have just typed and
places the cursor at the beginning of the question line. The
question or answer you were typing just before pressing "R is
not saved to disk.

If you press "E (press the <CONTROL> key and the <E> key
simultaneously), the program returns to the Edit Menu. If you
were in the middle of typing a question or an answer, they are
not saved to disk. You may press any one of the keys displayed at
the bottom of the screen at any time.

Now you can enter your first question. Do not press
<RETURN> to move the cursor from the first line of the ques-
tion to the second. If you have a question that is more than one
line long, just keep typing. The words will automatically “wrap
around” to the second line, if necessary. When you are finished
with your question, press the <RETURN> key to move the
cursor to the answer line. The cursor then moves down to the
answer field and waits for the answer.

When you have typed in the answer, press <Return> to add
the question and answer to the data base (save them to disk).
Once the question and answer have been saved, another blank
screen is displayed and you can add more questions and
answers.

Using the Data Base 83

When you have finished entering the questions and answers,
press “E as the first character on the question line. The program
will return to the Edit Menu.

#2. Edit data

This routine allows you to display as well as edit (make
changes) to any question or answer in the file. When you press
option #2 from the Main Menu, a “please wait” message is
displayed because the questions are being indexed, and this can
take up to 22 seconds. Next, you'll see the Question Edit screen
(Fig. 10-5).

T

TRIVIA DATA BASE
QUESTION EDIT

QUESTION #n FILE NAME filename

QUESTION?

ANSWER?

AFFWD AR REV ALIMP ACCHG AEEXT

_./

Fig. 10-5. Question Edit screen.

Again, as we noted in Fig. 10-4, there is a command line at the
bottom of the screen. Here, there are five command keys to use.
(Remember that the " stands for the <CONTROL> key, the
letter just stands for the letter.) “F (forward) displays the next
question and answer. "R (reverse) displays the previous ques-
tion and answer. “J (jump) jumps to a specified record.

"C (change) displays three additional commands, the change
options (see Fig. 10-6). You can change the question ("Q),
change the answer ("A), or exit ("E). When you are finished
editing the question (or answer), press <RETURN> and the
change options will again appear on the screen. Press "E to exit
and return to the Question Edit screen.

84 Atari Trivia Data Base

A Q: QUESTION A A ANSWER AEEXT

Fig. 10-6. Change options.

If you press "E when you are in the Question Edit screen, the
program returns to the Edit Menu.

#3. Return to Main Menu

Selection #3 allows you to quit working on the file currently in
memory and return from the Edit Menu to the Main Menu. From
the Main Menu, you can use an old file, create a new one, delete
a file, or end the data base program.

Now that you understand how to enter and edit questions, try
putting some questions and answers in a file so you can play the
trivia game. If you bought the Combo Pack and really can’t wait
to play the game, go ahead and load the sample questions
contained on the disk.

Chapter 11
Playing the Game

in Chapter10 you learned how to enter questions and answers
into your trivia data base file. This chapter uses the questions
you entered into the file and allows you to play a trivia game. For
those of you who did not store any questions and answers using
the data base, you can use the sample file called QUIZ (if you
bought the Combo Pack).

Overview

The game itself is much like any other trivia game. You are
asked random questions and you have to answer them. The
object of the game is to gain as many points as possible by
correctly answering the questions. The faster you are able to
answer a question, the more points you receive. The point value
for each question starts at 25 points, but as time goes by the
point value decreases. So it is to your benefit to answer the
questions as fast as possible. There will be times when a ques-
tion will be worth double points. These are the bonus ques-
tions. One important note: the answer you type must match the
correct answer exactly; otherwise, it will not count as the correct
answer.

The game can be played by one to four players. If a player
misses a question, he does not receive any points and the next
question is displayed.

The game keeps track of each player’s name and current score.
Atthe end of the game, the players’ names and scores are shown
in order, from highest to lowest.

Beginning the game

Type RUN “D:GAME” and press <ENTER> to run the trivia
game. For more detailed information on loading the program,
see the Loading Instructions section at the front of the book.

The first screen you see is the File Choice Menu (Fig. 11-1).
From this menu, choose the number that corresponds to the file
you want to use for the trivia game. You are asked how many

85

86 Atari Trivia Data Base

people plan to play. After entering the number of players, you
enter their names. Then a “please wait” message is displayed
while the program indexes the questions; and an “ordering
questions” message is displayed while the program randomly
orders the questions.

T

TRIVIA GAME
FILE CHOICES

1. filename
2. filename

0. EXIT
PRESS (0-r)

-

Fig. 11-1. File Choice Menu.

Playing the game

Once all the questions have been randomized, the game is
ready to begin. The game screen is displayed (Fig. 11-2). Note that
there is a timer in the upper right-hand section of the screen.
This timer indicates how much time is remaining and also how
much the question is worth. The status of all the players is at the
bottom of the screen. It shows the player’s name and current
score.

When you press <RETURNZ> after entering your answer, the
timer stops at the point value shown and the program checks
your answer against the correct answer.

If you are right, the message “correct n points scored” is
displayed (where n is the score), and you receive the number of
points indicated by the timer. Some of the questions are ran-
domly selected to be worth double the point value (the bonus
questions). If it was a bonus question, you receive twice the
points indicated by the timer. If you do not answer the question
correctly, the next question is displayed.

Playing the Game 87

T

TRIVIA GAME
GO name TIMER: n
QUESTION:
ANSWER?
PLAYER'S NAME SCORE
HARRY 40
JOE 8_5

Fig. 11-2. Game screen.

Exiting the game

The game ends when five questions per player are asked.
After the game ends, a screen is displayed that shows all the
players’ scores in descending (highest to lowest score) order.
You are then asked if you wish to play another game. If you
don’t, the program exits. If you want to play again, you are asked
if you want to use the same file and same players’ names. If so,
the questions are re-ordered and the game begins again. Other-
wise, you start all over again by loading in another file.

The main point behind the trivia game is for you to enjoy the
game while learning new and different trivia questions. Have
fun!

Chapter 12
In Conclusion

Well, that’s it. If you bought the Combo Pack, you have sample
questions on the disk. We really strained our brains for those
guestions, but now it is up to you. If you have a copy of Trivial
Pursuit (or some such game), you could enter some selected
questions and play with the computer keeping score. If not,
there are some other uses for the data base entry program and
game program.

If you have students who need to drill on facts, they could
have the questions entered (by you?), then practice with the
computer’s assistance. If you are studying for a professional
exam, the same sort of assistance is available for you.

Whether you use these two programs for entertainment or
education, it is our hope that you will gain from their purchase.
Also, a thorough examination of the code structure and sub-
routines will be of great assistance in any other data base type
programs that you might wish to write for your Atari computer.

Watch for other entertaining and instructional programs from
us for your Atari.

89

Appendix A

Variable Descriptions

Data Base

String variables
KEY1$(64)

KEY25$(64)
DIR$(20)

F$(8)

Q$(54)
A$(25)
B$(54)

N$@3)
Array variables
S(100)

B(100)

Number variables

KS

- Z m - X

w

Reserves 64 spaces in memory to hold ASCII
characters

Reserves 64 spaces in memory to hold ASCII
characters

Used to read in directory listings and to hold
file names for opening data files

Current file name
Current question
Current answer

Blank string that has 54 blanks, which are used
to print blanks on the screen and blank the
question and answer

Number of questions (string of length 3)

Sector locations of questions for indexing, S(1),
5(2), S(3)...5(100)

Byte locations of questions for indexing, B(1),
B(2), B(3)...B(100)

Start of KEY1$ and KEY2$ in memory
Key scan code

Loop variable used in FOR...NEXT loops
Number of files on the disk

Number of questions in the file

Number of characters used in question and
answer

Number of spaces at the end of the first line of
the question
91

92

C
E

Game

String variables
KEY1$(64)

KEY2$(64)
DIR$(20)

F$(8)

Q3%(54)
A$(25)
B$(54)

N$@3)
G$(25)
NM1$(10)
NM25(10)
NM3$(10)
NM4$(10)
NM$(40)

Array variables
$(100)

B(100)

Atari Trivia Data Base

Line number to return to for question and
answer entry

Flag to signify whether an edit or new entry
Current question number in an edit

Loop variable to print horizontal lines on
screen

Loop variable to print vertical lines on screen

Error code number

Reserves 64 spaces in memory to hold ASCII
characters

Reserves 64 spaces in memory to hold ASCII
characters

Used to read in directory listings and to hold
file names for opening data files

Current file name
Current question
Current answer

Blank string that has 54 blanks, which are used
to print blanks on the screen and blank the
question and answer

Number of questions (string of length 3)
Player's guess

Player 1's name

Player 2's name

Player 3's name

Player 4's name

A string that holds ail the players’ names in a
single string

Sector locations of questions for indexing, S(1),
S(2), S(3)...5(100)

Byte locations of questions for indexing, B(1),
B(2), B(3)...B(100)

Appendix A 93

P(4) Player’s scores, P(1), P(2), P(3), P(4)
Number variables

KS Start of KEY1$ and KEY2$ in memory

K Key scan code

L Loop variable used in FOR...NEXT loops

F Number of files on the disk

N Number of questions in the file

P Number of players

R Random number used to order the questions

T Number of characters used in question and
answer

FL Flag for bonus point questions

M Number of the player for the current turn

z Number for timer

12 Loop variable for nested FOR...NEXT loop

R Loop variable to print horizontal lines on
screen

C Loop variable to print vertical lines on screen

D Loop variable for delays

E Error code number

Appendix B
Data Base Program Listing

This book has an accompanying disk (this book/disk combina-
tion is called a Combo Pack), which contains the program list-
ings. If you did not buy the Combo Pack, you have to type the
listings into the computer. But before doing so, there are a few
things that are helpful to know.

First, the data base and game program listings contain certain
symbols. These symbols are what is displayed when certain keys
are pressed. Following is a list of all symbols that appear in the
listings, and their corresponding keystrokes.

Symbol Keys to press*

<CONTROL> <A>
<CONTROL> <C>
<CONTROL> <D>
<CONTROL> <E>
<CONTROL> <M>
<CONTROL> <Q>
<CONTROL> <R>
<CONTROL> <Z>

<ESC> and <CONTROL> <+ >

Press and release the <ESC> key
and then press <CONTROL>
<+ > simultaneously

[e] IR

(]

<ESC> and <CONTROL>
<CLEAR/< >

*Hold down the <CONTROL> key while pressing the following key.

Also, lines 110 and 120 in the data base and game listings
contain the key conversion routine. When you are typing these
lines, be sure to type them exactly as shown.

95

96 Atari Trivia Data Base

10@ DIM KEY1$(&64) ,KEY2$(64)

110 KEY1$="LJ; K+*0 PU I-=V C BXZ4 T6 521, .
N M/ R EY TWG9 @7 9<:FHD GSA"

128 KEYZ2$="LJ: K\"0 FU I_IV C BXZ$ #% % ‘[1
N M? R EY TWG() @ FHD GSA"

130 KS=PEEK (141) *2S&6+PEEK (143)

14@ POKE KS+94,34

15@ DIM DIR$(20) ,0%(54) ,A$(25) ,B+(54) ,F$(8) ,5¢
10@) ,B(108) ,N$(3)

160 FOR L=1 TO S4:B$(L,L)=" ":NEXT L:0%=R$:A$=
BE(1,25)

170 GRAPHICS @:TRAFP 7010

18@ GOSUE &110

199 POKE 1&,44:F0OKE S3I774,64

200 REM *%*% MAIN MENU

21Q POKE 752,1:FRINT nw»

220 FOSITION 11,2:PRINT "TRIVIA DATA BASE"

230 POSITION 14,S:FRINT "MAIN MENU®

740 POSITION 11,8:FRINT "1. LOAD OLD FILE"

250 FOSITION 11,1@:FPRINT "2. CREATE NEW FILE"
268 FOSITION 11,12:FRINT “I. DELETE FILE"

270 POSITION 11,14:FRINT "4. EXIT FROGRAM"

78@ POSITION 14,17:PRINT "PRESS (1-4) "

290 GOSUE &@1@: IF k2949 OR E2:52 THEN 290

30@ ONM KZ-48 GOTO 1019,2010,5010,3010

100@ REM »#% FILE CHOICE MENU

121@ PRINT "9":POSITION 12,3:PRINT "FILE CHOIC
ES”

1815 IF F:9 THEN F=9

1@2@ IF F=@ THEN 110@

1070 OFEN #4,5,8,"D:*.TDE":FOR L=1 TO F:INPUT
#4 ,DIR$:FOSITION 12,L+S:FRINT L;". “;DIR%+(3,10
Y:NEXT L:CLOSE #4

1@35 POSITION 12,F+7:FRINT "@. EXIT"

1240 FOSITION 12,F+9:PRINT "PRESS (@-";F;")"
1850 GOSUER &4@1@:IF K2:48 OR KI2XF+48 THEN 105@
1055 IF K2=48 THEN 210

12460 OPEN #5,6,@,"D:*.TDE"

187@ FOR L=1 TO K2-48: INPUT #5,DIR$:NEXT L:CLO
SE #5:F$=DIR$(3,11)

1988 IF FH(LEN(F$) ,LEN(F$) =" " THEN F$=F$(1,L
EN(F$)-1):60T0 1280

1@90 GOSUE &71@:0FEN #5,4,@,DIR$: INFUT #5:N$:C
LOSE #5:N=VAL (N$):G0TO 4010

110@ POSITION 7,4:FRINT “NO OLD DATA FILES ON
DISK":FOSITION 12,8:PRINT "PRESS ANY KEY"

1110 GOSUE &@1@:G0TO 210

2000 REM **% NEW FILE CHOICE

2010 FRINT "7T":POKE 752,@:F$=""

Appendix B 97

2015 IF F:>=9 THEN 209@

702@ FOSITION 7,5:PRINT “NEW FILE NAME “;: INFU

T F$

2023 IF F$="" THEN 2070

2@25 FOR L=1 TO LEN(F#$):IF ASC(F$(L,L))<65 OR

ASC(F$(L,L)) >9@ THEN 2870

2@27 NEXT L

20838 POKE 752,1:TRAP 204@:0PEN #5,6,8,"D:*.*"
204@ INPUT #5,DIR$:IF DIR$(3,LEN(F$)+2)=Ff THE

N CLOSE #5:G0TO 2@70

2050 GOTO 2040

2060 CLOSE #5:TRAP 701@:G0OSUB &71@:0PEN #5,8,0
,DIR$:N=0:N$="@ ":PRINT #5;N$:CLOSE #5:F=F+1:

GOTO 421@

2@7@ FOKE 752,1:FOSITION 3,8:PRINT "ILLEGAL OR
DUPLICATE FILE NAME":FOSITION 11,11:PRINT "PR

ESS ANY EEY"

2080 GOSUE 4@10:G0TO 210

209@ POKE 752,1:POSITION 8,8:°RINT “TOO MANY F
ILES ON DISKE":POSITION 12,11:PRINT “PRESS ANY

KEY™"

2100 GOSUB 4@81@:G0TO 210

Z@0@ REM #x#% QUESTION ENTRY

IO1@ IF N:>=10@ THEN T600

I@20 GOSUFR &21@:FOSITION 13,3:PRINT "QUESTION

ENTRY":N=N+1:G0SUE 6410

I@Z@ POSITION 9,21:FRINT "“R:RESTART “E:EXIT

I18@ OPEN #5,9,8,DIR$:0%=Ef:A$+=B%(1,25)

POKE 752,@:FOSITION 13,9:PRINT " ";

IF N>10@ THEN N=100:GO0TO 400

T=0:5=0

:B0TO 3700

‘=12 AND FL=1 THEN 4610

I23I@ IF K=12 THEN 345@

I24@ IF K=52 AND T:@ THEN POSITION T+13,9:PRIN

T " € ::Q$(T,T)=" ":T=T-1:G0T0 3210

3I27@ IF K2=32 AND E<>33 THEN 3210

I28@ T=T+1:04(T,T)=CHR$ (K2):POSITION T+13,9:PR
INT CHR$(K2);

IIP@ IF T<22 THEN 3210

3IT1@ IF K2=32 THEN POSITION 4,11:PRINT " «";:G

oTo =370

332@ FOR §=22 TO 1 STEF -1:IF Q#(S,5)=" " THEN

55 S=22-5: T=22+5:POKE 752,1
IZ4@ FOR L=1 TO S:Q@F(22+L ,22+L) =% (22-5+_,22-S
+L):FOSITION L+3,11:FRINT QF(22+L ,22+L) ;

98 Atari Trivia Data Base

IISO OF(2D-S+L,22-S+L)=" ":POSITION 3I5-S+L,9:F

RINT " “3;:NEXT L

IT6@ FPOEE 752,@0:POSITION T-18,11:PRINT " «";

IT7@ R=3372:G0T0O 3700

3372 IF K=12 AND FL=1 THEN 441@

3375 IF K=12 THEN 3450

=l 52 THEN 3397

ZI85 IF T:S5+22 THEN POSITION T-19,11:PRINT " «
"1:QE(T,T)=" ":T=T-1:60T0 Z370

3790 POKE 752,1:FOR L=1 TO S:QF(22-5+L,22-S+L)

=Q$ (22+L,22+L) : POSITION 35-S+L,9:PRINT Qf(22-S

+L,22-S+L) 3

3395 QF(22+L,22+L)=" ":POSITION L+3,11:PRINT "
"3 :NEXT L:Q$(22,22)=" ":POKE 752,@:POSITION =

S,9:PRINT " "

3296 S=@:T=21:G0T0 3210

3397 IF T=54 THEN 3370

34008 IF E2=32 AND K< >33 THEN 3370

I41@ T=T+1:0%(T,T)=CHR$(K2):POSITION T-19,11:P

RINT CHR#(K2);:G0TO 3370

3450 T=0:POSITION 10,17:PRINT " ";

T460 R=347@0:50T0 3700

I470 IF =12 AND FL=1 THEN 4630

I48@ IF k=12 THEN 3560

349@ IF K=S2 AND T:@ THEN POSITION T+1@,17:FRI

NT " e"3:A$(T,T)=" ":T=T-1:G0T0 440

IS@@ IF T=25 THEN 3440

351@ IF KE2=32 AND K<>33 THEN 3440

I52@ T=T+1:A%(T,T)=CHR$(K2):POSITION T+10,17:F

RINT CHR$(K2)::G0TO I440

IS60 FRINT #5;04:PRINT #5;A+:N=N+1:GOSUR &410:

Qf=B$:AF=B$ (1,25} : GOSUB &510:G0TO 3190

I60@ FRINT "1":FPOKE 752,1:POSITION 14,8:FPRINT
“FILE FULL":POSITION 12,11:PRINT "FRESS ANY KE

Yll

I4610 SOSUR 6@1Q:CLOSE #5:0FEN #5,17,0,DIR$:GOS

UBE &691@:FRINT #5;N#:CLOSE #5:G0TO 4010

3700 GOSUE &61@:IF FL=1 THEN 373

3710 IF E=1&8 THEN as—as.az—as(1,25>:sosua &51

@:60T0 319@

I72@ IF E=17@ THEN CLOSE #5:0DFEN #5,12,08,DIR$:

N=hi—~1:BOSUE 6918:PRINT #5;N$:CLOSE #5:G0TO 4@1

2

3730 GOTO R

AP0@ REM **% EDIT MENU

4B1@ FOKE 752,1:FRINT »#"

4@20 POSITION 11,2:PRINT “"TRIVIA DATA BASE"

4@Z@ POSITION 9,4:PRINT "CURRENT FILE - “;F$:F

OSITION 9,5:PRINT "# OF QUESTIONS — ":N

Appendix B 99

4@4@ POSITION 14,8:FRINT "EDIT MENU"

4050 POSITION 11,11:PRINT "1. ENTER DATA"

4@06@ POSITION 11,13:PRINT "2. EDIT DATA"

4@7@ POSITION 11,153:PRINT "Z. RETURN TO":POSIT
ION 14,156:PRINT "MAIN MENU"

4@8@ FOSITION 13,19:PRINT "PRESS (1-7)"

41@0@ GOSUB &£@1@: IF kK249 OR K2:X51 THEN 410889

411@ ON KZ-48 GOTO 3@16,412@,210

412@ PRINT "T":IF N=@ THEN POSITION 11,9:PRINT
"NO DATA IN FILE":POSITION 12,11:FRINT "FRESS
ANY EEY™

41Z@ IF N=@ THEN GOSUB &@1@:G0T0O 4210

414@ POSITION 11,11:PRINT ".... PLEASE WAIT"

4150 OFEN #4,12,0,DIR$: INPUT #4 N¥:N=VAL (N$):F

OrR L=1 TO N:NOTE #4,X,Y:5(L)=X:BL)=Y: INFUT #4
JAF,OF:NEXT L

417@ M=1:POKE 7S52,1:FPRINT “7":G0G5UR &4£21@:FOSIT
ION 13,3:PRINT "QUESTION EDIT"

4180 FPOSITION 2,21:FRINT " ~F:FWD “R:REY ~J:JIM

P ~C:CHG ~E:EXT "

42@@ POINT #4,5M) ,B(M): INFUT #4,0%,AF: NE=STR%
(M):IF M<{1@0@ THEN N¥(3,3)=" ":IF M<18 THEN N#(

2. 2)y=n n

2,2

4218 POSITION 13,5:PRINT N#;:G0SUB 6818:G0SUB
6820

4220 GOSUB 661@:IF K=1468 AND M>1 THEN M=M-1:G0
SUR 6518:50T0 4200

4238 IF K=184 AND MIN THEN M=M+1:G0SUB 651@:G0
TO 42@82

424@ IF K=129 THEN 4480

4250 IF kK=146 THEN 4500

4268 IF K=17@ THEN CLOSE #4:5070 4910

427@ GOTO 4220

44@@ TRAF 44@2@:FP0OSITION Z,21:PRINT B¥(1,386);:F
OSITION Z2,Z21:PRINT " JUMP TO WHICH RECORD ";:1I
NFUT M

4418 IF M<1 OR M>N THEN 4420

4428 POSITION 28,21:PRINT CHR¥(124);:TRAFP 7@10
: 5070 4180

450@ FPOKE 732,1:POSITION 2,21:PRINT " ~Q2:QUES
TION “~A:ANSWER “E:EXIT "

451@ GOSUR 6618:IF K=175 THEN 4600

452@ IF E=191 THEN 4620

45Z@ IF kE<>17@ THEN 4510

4548 GOTO 4188

448@ POSITION 2,21:PRINT B#$(1,35):0%=B%:505UB
&81@:FL=1:50T0 31790

451@ FL=B:FOINT #4,5(M) ,B(M):PRINT #4;0%:FRINT
#4; AF: 5070 4500

100 Atari Trivia Data Base

4478 POSITION 2,21:FRINT B$(1,35):A$=B+(1,25):
GOSUEB &820:FL=1:FPOKE 752,8:G0T0 3450

4578 FL=0:POINT #4,5(M) ,B(M):PRINT #4;0%:PRINT
#4;0F:G0TO 4500

S@@@ REM *%% FILE DELETION

€@1@ FRINT "7":POSITION 12,3:PRINT “FILE DELET
ION"

S@2@ IF F=8 THEN S120

S@Z0 OFEN #4,6,8,"D:*.TDB":FOR L=1 TO F:INPUT

#4 ,DIR$:POSITION 12,L+5:PRINT L;". ";DIR$(3,10
) :NEXT L:CLOSE #4

S@35 POSITION 12,F+7:PRINT "@. EXIT®

504@ POSITION 9,F+9:PRINT “DELETE WHICH FILE?"
:FOSITION 12,F+1@:FRINT "PRESS (@-";F;")"

SPS@ GOSUB 6@10: IF K248 OR K2:F+48 THEN 5050

S@SS IF K2=48 THEN 210

S@6@ OFEN #4,6,@,"D:*.TDB":FOR L=1 TO K2-48:IN

PUT #4,DIR$:NEXT L:CLOSE #4:F$=DIR$(3,11)

S@70 IF FH(LEN(F$) ,LEN(F$))=" " THEN F$=F$(1,L

EN(F$)-1):G0OTO S@7@

S@80 FPRINT "#":POSITION 12,1@:PRINT "DELETE *;

F$;"?":POSITION 12,12:PRINT "PRESS Y OR N"

S@9@ GOSUB 4@1@: IF K2=78 THEN 210

S51P@ IF K2=89 THEN GOSUE &71@:XI10 33,#1,0,8,DI

R$:F=F-1:60TD 21@

5110 GOTD S09@

S17@ POSITION 1@,6:PRINT "NDO FILES TO DELETE":
FOSITION 12,8:PRINT "PRESS ANY KEY"

S1Z@ GOSUB 401@:G0TD 210

£0D@ REM *#% KEY INPUT ROUTINE

6@1@ K=PEEK (764):IF K>127 THEN 4018

6028 POKE 764 ,255:K2=PEEK (K+KS) : RETURN

6108 REM *»*% FILE COUNTING ROUTINE

6118 TRAP 615@:F=0

6170 OFEN #4,6,08,"D:#, *"

6£13@ INPUT #4,DIR$:IF DIR$(11,13)<>"TDB" THEN
5170

61408 F=F+1:G0TO 6130

615@ CLOSE #4:1IF PEEK(195)<>136 THEN 7010

5160 TRAFP 781@:RETURN

5200 REM #**% SCREEN PRINTING ROUTINE

621@ FRINT “%":POKE 752,1:FOSITION 1,1:PRINT "
#"::FOSITION 1,22:PRINT "t";

&22@ FOR C=2 TO 37:POSITION C,1:PRINT ".-";:F0OS
ITION C,22:PRINT “=";:NEXT C

6230 FOSITION 3I8,1:PRINT "4"3;:POSITION 38,22:F
RINT "avn;

6248 FOR R=2 TO 21:POSITION 1,R:PRINT CHR$(124
)3 :POSITION 38,R:PRINT CHR$(1°4)::NEXT R

Appendix B 101

&£25@ POSITION 12,2:FPRINT “"TRIVIA DATA BASE"
&26@0 FOSITION 1,4:PRINT “§";:FOR C=2 TO 37:PRI
NT "wtz eNEXT Cz:FPRINT "4q"

&£27@ POSITION Z,S:PRINT "QUESTION #":FOSITION
19,5:PRINT "FILE NAME ";F#*

4288 POSITION 1,6:PRINT "§p";:FOR C=2 TO I7:PRI
NT "-'3 :NEXT C:FPRINT "4"

6290 POSITION 3,9:PRINT "QUESTION? ©

&30 FPOSITION 14,1@:FOR C=1 TO 22:FRINT "—";:
EXT C

631@ POSITION 4,12:FOR C=1 TO 32:FPRINT "™";:NE
XT C
&320 POSITION 1,14:PRINT "3";:FOR C=2 TO 37:FR

INT "="3:tNEXT C:PRINT "4"

6330 POSITION 3,17:PRINT "ANSWER? "

6340 FPOSITION 11,18:FOR C=1 TO 25:PRINT "="j;:N
EXT C

650 POSITION 1,2@8:PRINT " F';:FOR C=2 TD 3I7:FR
INT "="3:NEXT C:PRINT "4"

&Z6@ RETURN
640@ REM *»* QUESTION NUMBER ROUTINE
6410 POKE 752,1:POSITION 13,5:PRINT Nj
6420 RETURN
6588 REM #*%% BLANKING ROUTINE
6510 POKE 752,1:POSITION 14,9:PRINT B$(1,22)
FOSITION 4,11:PRINT B$(1,32);:POSITION 11,17
RINT Bf(1,25);
6520 RETURN
6608 REM ##% CONTROL KEY ROUTINE
6610 K=PEEK (764):1F K=255 THEN 6610
6620 POKE 764 ,255:K2=PEEK (K+KS)
663@ RETURN
670@ REM *»»* FILE NAME ROUTINE
&671@ DIR$(1,2)="D:":DIR$(3,LEN(F$)+3)=F$:DIR$(
LEN(F$)+3,LEN(F$)+7)="_TDB": DIR$ (LEN(F$) +7,20)
672@ RETURN
6800 REM #*% QUESTION PRINT ROUTINE
4810 POKE 752,1:POSITION 14,9:PRINT @%(1,22);:
POSITION 4,11:PRINT Q%(23,54);:RETURN
6820 POKE 752,1:POSITION 11,17:PRINT A$;:RETUR
N
69028 REM *%* NUMBER LENGTH ROUTINE
6718 N$=STR$(N):IF N<1@@ THEN N$(3,3)=" ":IF N
£1@ THEN N$(2,2)=" *
&£920 RETURN
700@ REM *%% DISK ERROR ROUTINE

P

102 Atari Trivia Data Base

7010 TRAP 7@&@:POKE 752,1:PRINT "T":E=PEEK (195
):POSITION 7,6:PRINT "ERROR ";E;“ AT LINE “;PE

EK (186) +PEEK (187) #256

7@2@ IF E=1&62 THEN POSITION 14,8:PRINT "DISKE F

ULL":GOTO 724@

703@ IF E>18 THEN POSITION 13,B8:PRINT “DISK ER

ROR"

7840 FOSITION 12,11:PRINT "PRESS ANY KEY":POKE
764,255: GOSUB 4601@:CLOSE #4:CLOSE #5

705@ IF E=144 THEN 8210

7068 RUN

SOB@ REM *x* EXIT

8018 PRINT "9":POKE 16,192:POKE S3774,247:F0KE
752,@: END

Appendix C
Game Program Listing

If you are typing the listing for the game program into the
computer, see the notes at the beginning of Appendix B.

103

104 Atari Trivia Data Base

100 DIM KEY1$(64) ,KEY2$(64)

11@ KEY1$="1J; K+*0 PU I-=V C BXZ4 3& 521, .
N M/ R EY TWA? @7 8<>FHD GSA"

120 KEY2$="LJ: K\™0 PU I_{V C BEXZ$% #& % '[]
N M? REY TWQ()° @ FHD GSA"

130 KS=PEEK (141) *2S6+PEEK (14@)

14@ POKE KS+94,34

15@ DIM DIR$(2@) ,0%(54) ,A$(25) ,B$(54) ,F£(8) ,S(
10@) ,B(10@) ,G% (25) ,N& ()

16@ DIM NM1$(18@) ,NM2$(18) ,NM3I$(10) ,NM4$ (18) ,NM
£(40) ,P(4)

17@ FOR L=1 TO S4:B$(L,L)=" ":NEXT L:Q#%=B$:As$=
Bf(1,25) : GE=A%: NME=B% (1, 4@)

180 GRAPHICS 0:TRAP 7010

190 FOKE 16,54:POKE 53774,64

1008 REM *%» FILE CHOICE MENU

1012 FOKE 752,1:PRINT "9":FOSITION 12,2:PRINT
“TRIVIA GAME"

1015 POSITION 12,4:FRINT "FILE CHOICES":GOSUB
611@: IF F>9 THEN F=9

1928 IF F=@ THEN 17020

103@ OFPEN #4,4,@,"D:#.TDB":FOR L=1 TO F:INPUT
#4,DIR$:FOSITION 12,L+5:FRINT L;". ";DIR$(3,10
) :NEXT L:CLOSE #4

1835 POSITION 12,F+7:PRINT "@. EXIT"

1848 POSITION 12,F+9:PRINT "PRESS (@—";F;")"
10S@ GOSUE 6@1@:IF K2<48 OR K2:F+48 THEN 1050
1955 IF K2=48 THEN 8010

1862 OFEN #5,6,@,"D:%.TDB"

107@ FOR L=1 TO K2-48: INPUT #5,DIR$:NEXT L:CLO
SE #5:F$=DIR$(3I,11)

1080 IF FH(LEN(F$),LEN(F$))=" * THEN F$=F$(1,L
EN(F$)-1):60TO 1280

109@ GOSUBR &71@:0FEN #5,4,0,DIR$: INPUT #5;N$:C
LOSE #5:N=VAL (N$): IF N<2@ THEN 1250

1100 GOTO 2@1@

120@ POSITION 8,6:PRINT "NO DATA FILES ON DISK
":POSITION S,9:PRINT "YOU MUST SWITCH DATA DIS
KS" ‘

1718 POSITION 8,1@:PRINT “"AND TYPE ‘RUN‘ AGAIN
“:POSITION 17,12:PRINT "OR"

1228 FOSITION 12,14:PRINT "LOAD AND RUN":POSIT
ION 8,15:FPRINT "THE DATA BASE PROGRAM®

1230 POSITION 12,19:PRINT "PRESS ANY KEEY":GOSU
B 4210:G0T0O 8010

17S@ PRINT “%":POSITION S5,8:PRINT “TOD FEW GUE
STIONS IN THE FILE":POSITION 12,9:PRINT "TO PL
AY A GAME"

176@ POSITION 12,11:FRINT "PRESS ANY KEY":GOSU
B 601@2:G0TO 1210

Appendix C 105

COP@ REM #»*%* NAME ENTRY

2818 POKE 752,1:PRINT "9

2020 POSITION 13,2:PRINT "TRIVIA GAME"

2032 POSITION 4,5:PRINT "HOW MANY PLAYERS?T PR
ESS 1 TO 4"

204@ GOSUB 6@10:P=K2-48:1F P<1 OR P>4 THEN 204
)

205@ POSITION 2,20:PRINT “NAMES MAY ONLY BE 10
CHARACTERS LONG":POKE 752,@

2@6@ TRAP 206@:POSITION 3,8:PRINT "ENTER PLAYE
R 1°S NAME "3::INPUT NM1$:IF NM1$="" THEN 2060

20878 IF P=1 THEN 2130

208@ TRAP 208@:POSITION 3,108:FRINT "ENTER PLAY
ER 2°S NAME ";:INPUT NM2%:IF NM2%="" THEN 7080
209@ IF P=2 THEN 2130

2108 TRAF 21@@:POSITION 3,12:FRINT “ENTER FLAY
ER Z°S NAME ";:INPUT NM3I$:IF NM3$="" THEN 2100
211@ IF P=3 THEN 2130

2120 TRAF 217@:POSITION I,14:PRINT "ENTER PLAY
ER 4°S NAME ";:INPUT NM4$:IF NM4$="" THEN 2170
2130 TRAP 7010:FOKE 752,1:NM$(1,10)=NM1$:NM$ (1
1,20) =NM2$: NM$ (21, 30) =NM3$: NM$ (31, 4@) =NM4$
IOB@ REM *%% GAME

Z@1@ FOKE 752,1:PRINT "#"

I@2@ FOSITION 11,8:PRINT ".... FLEASE WAIT":PO
SITION 12,11:FRINT "INDEXING DATA"

Z@3Z@ OPEN #4,12,0,DIRt: INPUT #4,N3:N=VAL (N$):F
OR L=1 TO N:iNOTE #4,X,Y:S(L)=X:B(L)=Y: INPUT #4
L0, AFINEXT L

I040 FOSITION 10,14:FRINT "ORDERING QUESTIONS®
I@5@ FOR L=1 TO N:S(@)=S{L):B(@)=BE(L):R=INT (RN
D(1)*N)+1:S(L)=S(R):B(L)=B(R):S(R)=S(@) :E(R) =B
(@) :NEXT L

3060 FRINT “7":GOSUB 421@:M=@:P (1) =@:P(2)=0:F(
3)=0:F (4) =0

IP7@ FOR L=1 TO FP*5:G0SUB 6410

3@75 FL=1:IF RND(1)<@.1 THEN FL=2:POSITION 10,
1S5:PRINT "BONUS PDINT QUESTION®

Z08@ M=M+1:IF M=P+1 THEN M=1

I@9@ FOSITION 3,4:PRINT "GET READY ";NMF (M%10-
9,M*1@):FOR D=1 TO 200:NEXT D

310@ POSITION 3,4:PRINT “GET SET “;NM$(M*10-9,
M*¥1@);" ":FOR D=1 TO 20@:NEXT D

3110 POSITION 3,4:PRINT "GO ";NM$(M*10-9,M*1@)
s

3128 POINT #4,S(L),B(L): INPUT #4,0%,A%:GOSUR 6&
810

3130 T=0:Z=50@:POKE 752,08:FOSITION 1@,12:PRINT

3148 GOSUB 6610:IF Z=0 THEN 200

106 Atari Trivia Data Base

I12@ IF k=12 THEN 3200

3160 IF K=52 AND T>@ THEN POSITION T+10,12:PRI

NT " &"3:6$(T,T)=" ":T=T—-1:60T7T0 3148

3178 IF T=25 THEN 31408

F188 IF K2=32 AND KI:x3Z3 THEN 3140

3190 T=T+1:6#«(T,T)=CHR¥ (K2):POSITION T+1@,12:P

RINT CHR#$ (KK2)3;:60T0 3140

3200 POKE 732,1:1F G¥<:A¥ THEN 322

Z21@ POSITION 7,1S5:PRINT "CORRECT — "; INT(Z®*FL
/2@) ;" POINTS SCORED":FP(M)=P(M)+INT(Z#FL/28):6
OSUB 641@:6G07T0 3320

3220 POSITION 1@,15:PRINT " INCORRECT ANSWER
2308 FOR D=1 TO Z@8@:NEXT D:POSITION 3,15:PRINT
B¥(1,34) :G$=B%(1,25) :G0SUB &31@:POSITION 33,4
:PRINT 25

I31@8 NEXT L

3Z2@ FOSITION 4,15:FPRINT "GAME OVER —-- FPRESS
ANY EEY":POKE 7b4,2=='GDSUB 6010: CLOSE #4

I3IT@ PRINT "7%“:POSITION 14,5:PRINT "RANKING"
I34@ FOR L=1 TO P:POSITION 18,L+6:M=1:FOR L2=1
TO P:IF P(LZ) XFP (M) THEN M=L2

ITEB NEXT L2:PRINT NMF (M*1@0-9,M%10@) ;" P (M)
tP(M)=—1:NEXT L

II68 FOSITION 12,P+8:PRINT "“PRESS ANY EEY":POK
E 754,2585:6G05UR 4810

TI7@ PRINT """ :POSITION S,3:FRINT "PLAY AGAIN?

PRESS ¥ OR N“

IIB8@ GOSUB &010: IF K2=78 THEN 8210

FI9@ IF KZ2<-89 THEN 33280

T40@ FOSITION 2,8:PRINT "SAME FLAYERS AND FILE
? PRESS Y OR N"

I41@ GOSUB &010:IF KZ2=78 THEN RUN

420 IF K289 THEN 3410

4@ DPEN #4,12,Z,DIR$:BDTD Ipae

6020 REM *#% KEY INFPUT ROUTINE

6810 KE=FPEEK (764):IF K>127 THEN 6010

&£02@ POKE 744,255: H2=PEEK (K+K5) : RETURN

&£1P@ REM »¥x FILE COUNTING ROUTINE

&118 TRAP 41508:F=0

&120 OFEN #4,46,0,"Drx #"

5128 INPUT #4 DIRI IF DIR$(11 13)<>"TDB" THEN
5170

&£14@ F=F+1:G0T7T0 6138

&612@ CLOSE #4:1IF PEEK(195)<>136 THEN 7010
&168 TRAF 7@10: RETURN

6208 REM #xx SCREEN PRINTING ROUTINE

621@ PRINT "T":POKE 752,1:POSITION 1,1:PRINT "
p" 3 s POSITION 1,22:PRINT " u";

Appendix C 107

6228 FOR C=2 TO 37:POSITION C,1:PRINT "-";:POS
ITION C,22:PRINT "=";:NEXT C

6230 POSITION 38,1:PRINT “4";:POSITION 38,22:P
RINT "ang

6240 FOR R=2 TO 21:POSITION 1 ,R:PRINT CHR#(124
Y3:FOSITION Z28,R:PRINT CHR¥(124); :NEXT R

4£25@ POSITION 15,2:PRINT "TRIVIA GAME"

6260 POSITION 1,3:PRINT "#';:FOR C=2 TO 3I7:PRI
NT "="3:NEXT C:PRINT "4*"

627@ POSITION 25,4:FPRINT "TIMER: 25"

6280 POSITION 1,5:PRINT "#';:FOR C=2 TO 37:FPRI
NT "="3eNEXT CzPRINT "4"

6298 POSITION 3,7:PRINT "QUESTION: "

6308 POSITION 14,8:FOR C=1 TO 22:PRINT "=";:NE
XT C

318 POSITION 4,1@:FOR C=1 TO 32:PRINT "=";:NE
XT C
6320 POSITION 1,14:PRINT "}'3;:FOR C=2 TO 3I7:PR
INT "="3;:NEXT C:PRINT "4"
633@ POSITION 3,12:PRINT "ANSWER?":POSITION 11
,13:FOR C=1 TO 25:PRINT "=";:NEXT C
6340 POSITION 1,16:PRINT "k';:FOR C=2 TO 3I7:PR
INT “w3:NEXT C:PRINT "4"

635@ POSITION S5,17:PRINT “PLAYER'S NAME","SCOR
E'l

636@ POSITION 8,18:PRINT NM1$:POSITION 8,19:PR
INT NM2$:POSITION 8,2@:PRINT NM3I$:POSITION 8,2
1:PRINT NMA%

6378 RETURN

64P@ REM *#% SCORE FRINTING ROUTINE

641@ POKE 752,1:FOSITION 26,18:PRINT P(1):IF P
»1 THEN FOSITION 26,19:PRINT P(2)

6420 IF F>2 THEN POSITION 26,2@0:PRINT P(3):IF
P:3 THEN POSITION 26,21:FRINT P(4)

&47@ RETURN

6508 REM ##% BLANKING ROUTINE

6518 FOKE 752,1:POSITION 14,7:PRINT BH(1,22);¢:
POSITION 4,9:PRINT B$(1,32);:POSITION 11,12:FR
INT Bf(1,25);

4528 RETURN

5608 REM *#% TIMER-KEEY ROUTINE

6610 E=PEEK (764):2=Z-1:POKE 752,1:POSITION 33,
4:FRINT INT(Z/2@);" “;:POKE 752,0:POSITION T+
11,12:PRINT * &";

6628 IF Z=B THEN 645@

663@ IF E=255 THEN 6610

6640 K2=PEEK (K+KS)

6650 FOKE 764 ,255:RETURN .

470@ REM *%% FILE NAME ROUTINE

108 Atari Trivia Data Base

5710 DIR$(1,2)="D:":DIR$(Z,LEN(F$)+3)=F$: DIR$(
LEN(F$)+3,LEN(F$)+7)="_TDB": DIR$ (LEN(F%$) +7,2@)

— b "

6720 RETURN

4808 REM »%% RQUESTION PRINT ROUTINE

481@ POKE 752,1:POSITION 14,7:PRINT Q$(1,22);:

FOSITION 4,9:PRINT Q3$(23,54); :RETURN

700@ REM %% DISK ERROR ROUTINE

7818 TRAP 7@5@0:POKE 752,1:FRINT "7":E=PEEK (195
):POSITION 9,&6:PRINT "ERROR ";E;" AT LINE ";PE

EK (186) +PEEK (187) #2554

7@2@ IF E>18 THEN POSITION 13,8:FRINT "DISK ER

ROR™

703@ POSITION 12,11:PRINT "PRESS ANY KEY":FOKE
764,255: GOSUB 6010: CLOSE #4:CLOSE #5

7048 IF E=144 THEN 8010

7@S@ RUN

S00Q REM »x*% EXIT

801@ PRINT "T":POKE 16,192:POKE S3774,247:POKE
752,@8: END

Data Base Flowchart 1-A Overview

q (foldout)

Flowchart 1-A

Initialize
variables
Main
Menu
A y \
1. Load 2. Create _
an old data a new data 3. D{gllete . 4. Exit
file file alile the program
Edit
Menu
) \
1. Enter 2. Edit 3t.0R;;ui;n
d
new data old data Ver

Data Base Flowchart 1-B Initialize variables

< (foldout)

Flowchart 1-B

Set up key
conversion
routine

Initialize
variables

Set up
error
trapping

\

Count number
of data files
on disk

1

Data Base Flowchart 1-C Main Menu

q (foldout)

Flowchart 1-C

Print
options

[

Call key
input
routine

Is input
between

144
?

Go to appropriate
section of
the program

|

Data Base Flowchart 1-D Load a file

q (foldout)

Flowchart 1-D

Set maximum
number of
files to 9

Is

number of

files=0
?

) Print no Return to
files message o Main Menu

Print
file names

A

Call key
input
routine

Is input

== to a file

number
?

Convert
file names

Get number
of questions
in file

T

Data Base Flowchart 1-E Create a file

q (foldout)

Flowchart 1-E

Is number Print too Return to
of T(;s many files - Main Menu
>7— message

3

Input new
file name

Is
name valid
?

Print 0 as
the first
record

l

Data Base Flowchart 1-F Delete a file

q (foldout)

Is

number of

files=0
?

Flowchart 1-F

Print no
files message

Return to
Main Menu

Print
file
names

Call key
input
routine

Is input

=10 a file

number
?

Delete
the file

|

Data Base Flowchart 1-G Edit Menu

< (foldout)

Flowchart 1-G

Print
options

Call key
input
routine

Is input
between

183
?

Return
to Main
Menu

Go to appropriate
section of
the program

i

Data Base Flowchart 1-H Enter data

q (foldout)

Flowchart 1-H

Is
number
of questions

Print
entry -'J

Open
file

Is
new number
of questions
>100

Abort
entry

=1 screen
k ?
Print
file full
message
Close
file
Y
Print
number
Return of questions
to edit to file
choices
Return
to Edit
Menu

1 cont.

Data Base Flowchart 1-H cont. Enter data

q (foldout)

Flowchart 1-H cont.

cont.
Blank Set
D—b current count
data variables
A
Call control [
key
routine
Y
AE AR <RETURN> | <BACKSPACE> fller
symbol
Perform Updgte
¥ and scl
N nd screen
Y u Y
cont.
\J

Data Base Flowchart 1-H cont. Enter data

q (foldout)

Flowchart 1-H cont.

cont.

Set
count
variables

Call
control
key
routine

Is
key
valid
?

Y
Y

',\E

AR

<RETURN>

A

<BACKSPACE>

letter
or
symbol

¥

Print
question
and answer
to file

Perform -~
backspace

Update
answer
and screen

[

Increment
number
of
questions

Data Base Flowchart 1-1 Edit data

q (foldout)

Flowchart 1-I

Print
edit
screen

Set current
record to 1

Input current
1 record from

file

Print current
question and
answer to screen

D , Call control
key input

Is key
valid
7
Y
A) AC ~E
Y
Is Is Input
current current record tR:téJ(;iq
record record number M
<7N >1 to jump to e

7

Increment Decrement
current current
record record
number number

\

4 cont.

Data Base Flowchart 1-1 cont. Edit data

q (foldout)

Flowchart 1-1 cont.

| cont.

A
Print
change
options
A
Set flag
fFL=1
Call control
key
routine
Is key N
valid
?
Y
~Q AA AE
\ [
Cal! Calt Return
question answer for another
entry entry edit
routine routine option
\ A
Set flag Set flag
FL=0 FL=0
\ A
. Print
Print new new
question answer
to file to file

Game Flowchart 2-A Overview

q (foldout)

Flowchart 2-A

Initialize

variables

Choose
file

Enter
names

-~ Play
game

Exit

Play again program
?

Same
names and

file
?

Game Flowchart 2-B Initialize variables

q (foldout)

Flowchart 2-B

Set up key
conversion
routine

Initialize
variables

A

Set up
error
trapping

\

Count number
of data files
on disk

Game Flowchart 2-C Choose a file

q (foldout)

Flowchart 2-C

Set maximum
number of
files to 9

Is

number of

files=0
7

Print no Exit
files message program

Print
file
names

3

Call key
input
routine

Is input

=to a file

number
7

Get number
of questions
in file

Game Flowchart 2-D Enter names

q (foldout)

Flowchart 2-D

Ask number
of players

A

Call key

input
routine

Is input

Input
names

Set up
single string
with all names

1

Game Flowchart 2-E Play the game

q (foldout)

FOR-NEXT
D\>——' loop to

Flowchart 2-E

Open
file

Index
data

\

Randomly
order
questions

Print
game
screen

Reset
score
variables

A

play game

Set FL
=2
for points

Set FL
=1
for points

Print

bonus

point
message

e

™

Determine
player

l cont

Game Flowchart 2-E cont. Play the game

q (foldout)

Flowchart 2-E cont.

Lcont.

Print
get ready
messages

1

Input
question
and answer
from file

Print
question

Call
control
timer
routine

Print
-a time
remaining

Decrement
timer

<BACKSPACE> letter <RETURN>

symbol
Update
Perform guess
backspace and
screen

4

,y cont.

Game Flowchart 2-E cont. Play the game

q (foldout)

Flowchart 2-E cont.

1 cont.

Compare
guess
and
answer

Is
guess

correct
?

A
Print Print
guess guess
correct incorrect
message message

Update
score

screen

Is

loop

completed
7

Print
final
ranking

)

Go to play
again
optiens

ATARI :
Trivia
Data Base

® Includes listings of two complete programs, a data base
and a trivia game :

® Introduces ATARI owners to data bases and their
applications by enabling users to understand how a
simplified data base is created and why it works

® Discusses user-friendly data entry, error checking and
program continuity

® Shows how to design file records

ATARI Trivia Data Base is an entertaining way fo
see for yourself how data bases can be used for
fun and education, as well as for business

Machine Requirements:
e Atari 800XL or Atari 800 (64K)
e 1 Disk Drive (DOS 2.0)

Howard W. Sams & Co., Inc.
A Publishing Subsidiary of ITT
4300 West 62nd Street, Indianapolis, Indiana 46268 U S.A.

$8.95/22397 ISBN: 0-672-22397-X

